留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

积分形式非局部本构关系的界带分析方法

姚征 郑长良

姚征, 郑长良. 积分形式非局部本构关系的界带分析方法[J]. 应用数学和力学, 2015, 36(4): 362-370. doi: 10.3879/j.issn.1000-0887.2015.04.003
引用本文: 姚征, 郑长良. 积分形式非局部本构关系的界带分析方法[J]. 应用数学和力学, 2015, 36(4): 362-370. doi: 10.3879/j.issn.1000-0887.2015.04.003
YAO Zheng, ZHENG Chang-liang. Inter-Belt Analysis of the Integral-Form Nonlocal Constitutive Relation[J]. Applied Mathematics and Mechanics, 2015, 36(4): 362-370. doi: 10.3879/j.issn.1000-0887.2015.04.003
Citation: YAO Zheng, ZHENG Chang-liang. Inter-Belt Analysis of the Integral-Form Nonlocal Constitutive Relation[J]. Applied Mathematics and Mechanics, 2015, 36(4): 362-370. doi: 10.3879/j.issn.1000-0887.2015.04.003

积分形式非局部本构关系的界带分析方法

doi: 10.3879/j.issn.1000-0887.2015.04.003
基金项目: 国家自然科学基金(11202040);中央高校基本科研业务专项资金(3132015100)
详细信息
    作者简介:

    姚征(1978—),男,河北人,副教授,博士(通讯作者. E-mail: yaozheng@dlmu.edu.cn);郑长良(1963—),男,辽宁人,教授,博士,博士生导师(E-mail: zhengcl@dlmu.edu.cn).

  • 中图分类号: O302

Inter-Belt Analysis of the Integral-Form Nonlocal Constitutive Relation

Funds: The National Natural Science Foundation of China(11202040)
  • 摘要: 基于Hamilton体系研究了Eringen的非局部线弹性本构关系.Eringen的非局部线弹性理论存在积分型和微分型两类本构关系.由于方程的形式简单,目前多采用微分型本构;而积分型本构方程是典型的积分-微分方程,数值求解较为困难.在分析结构力学中提出的界带分析方法,成功求解了时间滞后问题的积分-微分方程.根据分析动力学与分析结构力学的模拟关系,将界带分析方法引入到非局部理论的积分型本构方程,可以实现积分-微分方程的数值求解.通过杆件的振动分析算例验证了该套理论算法的准确性和可行性,也指出了辛体系算法在非局部力学问题中的潜力.
  • [1] Eringen A C.Nonlocal Continuum Field Theories [M]. New York: Springer, 2002.
    [2] Eringen A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[J].Journal of Applied Physics,1983,54(9): 4703-4710.
    [3] 郑长良. 非局部弹性直杆振动特性及Eringen常数的一个上限[J]. 力学学报, 2005,37(6): 796-798.(ZHENG Chang-liang. The free vibration characteristics of nonlocal continuum bar and an upper bound of material constant in Eringen’s nonlocal model[J].Chinese Journal of Theoretical and Applied Mechanics,2005,37(6): 796-798.(in Chinese))
    [4] Burhanettin S A, Ghatu S. A nonlocal formulation based on a novel averaging scheme applicable to nanostructured materials[J].Mechanics of Materials,2003,35(3/6): 281-294.
    [5] Ganghoffer J F, de Borst R. A new framework in nonlocal mechanics[J].International Journal of Engineering Science,2000,38(4): 453-486.
    [6] Reddy J N. Nonlocal theories for bending, buckling and vibration of beams[J].International Journal of Engineering Science,2007,45(2/8): 288-307.
    [7] 张洪武, 姚征, 钟万勰. 界带分析的基本理论和计算方法[J]. 计算力学学报, 2006,23(3): 257-263.(ZHANG Hong-wu, YAO Zheng, ZHONG Wan-xie. Basic theory and algorithm for inter-belt analysis[J].Chinese Journal of Computational Mechanics,2006,23(3): 257-263.(in Chinese))
    [8] 姚征, 张洪武, 王晋宝, 钟万勰. 基于界带模型的碳纳米管声子谱的辛分析[J]. 固体力学学报, 2008,29(1): 13-22.(YAO Zheng, ZHANG Hong-wu, WANG Jin-bao, ZHONG Wan-xie. Symplectic analysis for phonon dispersion of carbon nanotubes based on inter-belt model[J].Chinese Journal of Solid Mechanics,2008,29(1): 13-22.(in Chinese))
    [9] Zhang H W, Yao Z, Wang J B, Zhong W X. Phonon dispersion analysis of carbon nanotubes based on inter-belt model and symplectic solution method[J].International Journal of Solids and Structures,2007,44(20): 6428-6449.
    [10] 姚征, 张洪武, 钟万勰. 连续系统的界带分析方法[J]. 计算力学学报, 2013,30(6): 749-756.(YAO Zheng, ZHANG Hong-wu, ZHONG Wan-xie. Inter-belt analysis of continuous system[J].Chinese Journal of Computational Mechanics,2013,30(6): 749-756.(in Chinese))
    [11] 姚征, 张洪武, 钟万勰. 时滞与界带[J]. 动力学与控制学报, 2012,10(2): 97-106.(YAO Zheng, ZHANG Hong-wu, ZHONG Wan-xie. Time delay and inter-belt[J].Journal of Dynamics and Control,2012,10(2): 97-106.(in Chinese))
    [12] ZHONG Wan-xie.Duality System in Applied Mechanics and Optimal Control [M]. New York: Springer, 2004.
    [13] 钟万勰. 应用力学的辛数学方法[M]. 北京: 高等教育出版社, 2006.(ZHONG Wan-xie. S ymplectic Solution Methodology in Applied Mechanics [M]. Beijing: Higher Education Press, 2006.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1328
  • HTML全文浏览量:  146
  • PDF下载量:  844
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-26
  • 修回日期:  2014-12-17
  • 刊出日期:  2015-04-15

目录

    /

    返回文章
    返回