留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拟弧长延拓法在静电激励MEMS吸合特性研究中的应用

梁斌斌 张龙 王炳雷 周慎杰

梁斌斌, 张龙, 王炳雷, 周慎杰. 拟弧长延拓法在静电激励MEMS吸合特性研究中的应用[J]. 应用数学和力学, 2015, 36(4): 386-392. doi: 10.3879/j.issn.1000-0887.2015.04.006
引用本文: 梁斌斌, 张龙, 王炳雷, 周慎杰. 拟弧长延拓法在静电激励MEMS吸合特性研究中的应用[J]. 应用数学和力学, 2015, 36(4): 386-392. doi: 10.3879/j.issn.1000-0887.2015.04.006
LIANG Bin-bin, ZHANG Long, WANG Bing-lei, ZHOU Shen-jie. Application of the PseudoArclength Continuation Algorithm to Investigate the SizeDependent Pull-in Instability of the Electrostatically Actuated MEMS[J]. Applied Mathematics and Mechanics, 2015, 36(4): 386-392. doi: 10.3879/j.issn.1000-0887.2015.04.006
Citation: LIANG Bin-bin, ZHANG Long, WANG Bing-lei, ZHOU Shen-jie. Application of the PseudoArclength Continuation Algorithm to Investigate the SizeDependent Pull-in Instability of the Electrostatically Actuated MEMS[J]. Applied Mathematics and Mechanics, 2015, 36(4): 386-392. doi: 10.3879/j.issn.1000-0887.2015.04.006

拟弧长延拓法在静电激励MEMS吸合特性研究中的应用

doi: 10.3879/j.issn.1000-0887.2015.04.006
基金项目: 国家自然基金 (11202117;11272186);山东省自然基金(ZR2012AM014;BS2012ZZ006)
详细信息
    作者简介:

    梁斌斌(1991—),男,贵州遵义人,硕士生(E-mail: binliang_100@163.com);王炳雷(1980—),男,山东泰安人,讲师,博士,硕士生导师(通讯作者. E-mail: bwang@sdu.edu.cn).

  • 中图分类号: O302

Application of the PseudoArclength Continuation Algorithm to Investigate the SizeDependent Pull-in Instability of the Electrostatically Actuated MEMS

Funds: The National Natural Science Foundation of China(11202117; 11272186)
  • 摘要: 在静电激励微机电系统MEMS(micro-electro-mechanical systems)吸合特性研究中,基于应变梯度理论的微梁结构的控制方程是非线性高阶微分方程,给方程的求解带来了困难.由于该问题的数学模型本质上是分叉问题,方程的解支上出现奇异点,而运用局部延拓法无法通过奇异点.因此,通过运用广义微分求积法将控制方程降阶离散,结合拟弧长延拓法使迭代顺利通过奇异点,求出了整个解曲线.结果表明,拟弧长延拓法能有效并准确地求解具有分叉现象的高阶微分方程问题,为精确预测静电激励MEMS的吸合电压提供有力帮助.
  • [1] Younis M I, Abdel-Rahman E M, Nayfeh A. A reduced-order model for electrically actuated microbeam-based MEMS[J].Journal of Microelectromechanical Systems,2003,12(5): 672-680.
    [2] Pamidighantam S, Puers R, Baert K, Tilmans H A C. Pull-in voltage analysis of electrostatically actuated beam structures with fixed-fixed and fixed-free end conditions[J].Journal of Micromechanics and Microengineering,2002,12(4): 458-464.
    [3] Kuang J H, Chen C J. Dynamic characteristics of shaped micro-actuators solved using the differential quadrature method[J].Journal of Micromechanics and Microengineering,2004,14(4): 647-655.
    [4] 徐晓建, 邓子辰. 非局部因子和表面效应对微纳米材料振动特性的影响[J]. 应用数学和力学, 2013,34(1): 10-17. (XU Xiao-jian, DENG Zi-chen. Surface effects of adsorption-induced resonance analysis of micro/nanobeams via nonlocal elasticity[J].Applied Mathematics and Mechanics,2013,34(1): 10-17. (in Chinese))
    [5] Lam D C C, Yang F, Chong A C M, Wang J, Tong P. Experiments and theory in strain gradient elasticity[J].Journal of the Mechanics and Physics of Solids,2003,51(8): 1477-1508.
    [6] Mindlin R D. Second gradient of strain and surface-tention in linear elasticity[J].International Journal of Solids and Structures,1965,1(4): 417-438.
    [7] KONG Sheng-li, ZHOU Shen-jie, NIE Zhi-feng, WANG Kai. Static and dynamic analysis of micro beams based on strain gradient elasticity theory[J].International Journal of Engineering Science,2009,47(4): 487-498.
    [8] WANG Bing-lei, ZHAO Jun-feng, ZHOU Shen-jie. A micro scale Timoshenko beam model based on strain gradient elasticity theory[J].European Journal of Mechanics-A/Solids,2010,29(4): 591-599.
    [9] WANG Bing-lei, ZHOU Shen-jie, ZHAO Jun-feng, CHEN Xi. A size-dependent Kirchhoff micro-plate model based on strain gradient elasticity theory[J].European Journal of Mechanics-A/Solids,2011,30(4): 517-524.
    [10] WANG Bing-lei, ZHOU Shen-jie, ZHAO Jun-feng, CHEN Xi. A size-dependent pull-in instability of electrostatically actuated microbeam-based MEMS[J].Journal of Micromechanics and Microengineering,2011,21(2): 027001.
    [11] SHU Chang, Richards B E. Application of generalized differential quadrature to solve 2-dimensional incompressible Navier-Stokes equations[J].International Journal for Numerical Methods in Fluids,1992,15(7): 791-798.
    [12] Bellman R, Casti J, Kashef B G. Differential quadrature-technique for rapid solution of nonlinear partial differential equations[J].Journal of Computational Physics,1972,10(1): 40-52.
    [13] 杨忠华. 非线性分歧:理论和计算[M]. 北京: 科学出版社, 2007: 41-49.(YANG Zhong-hua.Nonlinear Bifurcation: Theory and Calculation [M]. Beijing: Science Press, 2007: 41-49.(in Chinese))
    [14] Keller H B.Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, in Applications of Bifurcation Theory[M]. Rrbinowitz P H ed. New York: Academis Press Inc, 1977.
    [15] Riks E. Incremental approch to the solution of snaping and buckling problems[J].International Journal of Solids and Structures,1979,15(7): 529-551.
    [16] Tilmans H A C, Legtenberg R. Electrostatically driven vacuum-encapsulated polysilicon resonators—part II: theory and performance[J].Sensors and Actuators A: Physical,1994,45(1): 67-84.
    [17] Rokni H, Seethaler R J, Milani A S, Hosseini-Hashemi S, LI Xian-fang. Analytical closed-form solutions for size-dependent static pull-in behavior in electrostatic micro-actuators via Fredholm integral equation[J].Sensors and Actuators A: Physical,2013,190: 32-43.
    [18] Aifantis E C. Exploring the applicability of gradient elasticity to certain micro/nano reliability problems[J].Microsystem Technologies,2009,15(1): 109-115.
  • 加载中
计量
  • 文章访问数:  1407
  • HTML全文浏览量:  76
  • PDF下载量:  924
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-30
  • 修回日期:  2014-12-18
  • 刊出日期:  2015-04-15

目录

    /

    返回文章
    返回