[1] |
Hille T S, Turteltaub S, Suiker A S J. Oxide grown and damage evolution in thermal barrier coatings[J].Engineering Fracture Mechanics,2011,78(10): 2139-2152.
|
[2] |
Clarke D R, Oechsner M, Padture N P. Thermal barrier coatings for more efficient gas-turbine engines[J].Materials Research Society,2012,37(10): 891-898.
|
[3] |
Belle W, Marijnissen G, Van Lieshout A. The evolution of thermal barrier coatings-status and upcoming solutions for today’s key issues[J].Surface and Coatings Technology,1999,120: 61-67.
|
[4] |
Miller R A. Current status of thermal barrier coatings—an overview[J].Surface and Coatings Technology,1987,30(1): 1-11.
|
[5] |
杨帆, 刘彬, 方岱宁. 基于相场方法的铁基合金高温氧化与生长应力分析[J]. 应用数学和力学, 2011,32(6): 710-717.(YANG Fan, LIU Bin, FANG Dai-ning. Analysis on high-temperature oxidation and the growth stress of iron-based alloy using phase field method[J].Applied Mathematics and Mechanics,2011,32(6): 710-717.(in Chinese))
|
[6] |
Karlsson A M, Hutchinson J W, Evans A G. A fundamental model of cyclic instabilities in thermal barrier systems[J].Journal of the Mechanics and Physics of Solids,2002,50(8): 1565-1589.
|
[7] |
黄霞, 丁军, 曾祥国. 热障涂层系统中TGO应力生成的数值模拟[J]. 机械设计与制造, 2007 (12): 199.(HUANG Xia, DING Jun, ZENG Xiang-guo. Numerical simulation of stress generated in TGO in thermal barrier systems[J].Machinery Design & Manufacture,2007(12): 199.(in Chinese))
|
[8] |
华佳捷, 张丽鹏, 刘紫薇, 王墉哲, 林初城, 曾毅, 郑学斌. 热障涂层失效机理研究进展[J]. 无机材料学报, 2012,27(7): 680-686.(HUA Jia-jie, ZHANG Li-peng, LIU Zi-wei, WANG Yong-zhe, LIN Chu-cheng, ZENG Yi, ZHENG Xue-bin. Progress of research on the failure mechanism of thermal barrier coatings[J].Journal of Inorganic Materials,2012,27(7): 680-686.(in Chinese))
|
[9] |
韩萌, 黄继华, 陈树海. 热障涂层应力与失效机理若干问题的研究进展与评述[J]. 航空材料学报, 2013,33(5): 83-98.(HAN Meng, HUANG Ji-hua, CHEN Shu-hai. Research progress and review on key problems of stress and failure mechanism of thermal barrier coating[J].Journal of Aeronautical Materials,2013,33(5): 83-98.(in Chinese))
|
[10] |
HUANG Ming, LI Yue-ming. X-ray tomography image-based reconstruction of microstructural finite element mesh models for heterogeneous materials[J].Computational Materials Science,2013,67: 63-72.
|
[11] |
Ulm F J, Coussy O, Li K F, Larive C. Thermal-chemo-mechanics of ASR-expansion in concrete structures[J].Journal of Engineering Mechanics-ASCE,2000,126(3): 233-242.
|
[12] |
林晨, 黄明, 李跃明. 考虑微观真实结构特征的热障涂层系统化学-热-力学三场耦合失效机理研究[C]//CSTAM2013-A31-1949, 中国力学大会-2013, 西安, 2013.(LIN Chen, HUANG Ming, LI Yue-ming. The research on the failure mechanisms under chemo-thermal-mechanical coupled affect in thermal barrier coatings based on the real microstructures features[C]//CSTAM2013-A31-1949,Chinese Conference of Theoretical and Applied Mechanics -2013,Xi’an, 2013.(in Chinese))
|
[13] |
Dormieux L, Kondo D, Ulm F J.Microporomechaines [M]. John Wiley & Sons, 2006.
|
[14] |
Busso E P, Qian Z Q, Taylor M P, Evans H E. The influence of bondcoat and topcoat mechanical properties on stress development in thermal barrier coating systems[J].Acta Materialia,2009,57(8): 2349-2361.
|
[15] |
Loeffel K, Anand L, Gasem Z M. On modeling the oxidation of high-temperature alloys[J].Acta Materialia,2013,61(2): 399-424.
|
[16] |
Rosler J, Bker M, Volgmann M. Stress state and failure mechanisms of thermal barrier coatings: role of creep in thermal grown oxide[J].Acta Materialia,2001,49(18): 3659-3670.
|
[17] |
Martena M, Botto D, Fino P,Sabbadini S, Gola M M, Badini C. Modeling of TBC system failure: stress distribution as a function of TGO thickness and thermal expansion mismatch[J].Engineering Failure Analysis,2006,13(3): 409-426.
|
[18] |
Evans A G, Mumm D R, Hutchinson J W, Meier G H, Pettit F S. Mechanisms controlling the durability of thermal barrier coatings[J].Progress in Materials Science,2001,46(5): 505-553.
|
[19] |
Evans H E. Oxidation failure of TBC systems:an assessment of mechanisms[J].Surface and Coatings Technology,2011,206(7): 1512-1521.
|
[20] |
Busso E P, Lin J, Sakurai S. A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system—part I: model formulation[J].Acta Materilia,2001,49(9): 1515-1528.
|