留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑化学氧化效应时热障涂层氧化物的生长规律

柴怡君 林晨 李跃明

柴怡君, 林晨, 李跃明. 考虑化学氧化效应时热障涂层氧化物的生长规律[J]. 应用数学和力学, 2015, 36(4): 404-413. doi: 10.3879/j.issn.1000-0887.2015.04.008
引用本文: 柴怡君, 林晨, 李跃明. 考虑化学氧化效应时热障涂层氧化物的生长规律[J]. 应用数学和力学, 2015, 36(4): 404-413. doi: 10.3879/j.issn.1000-0887.2015.04.008
CHAI Yi-jun, LIN Chen, LI Yue-ming. Growth Trend of Thermal Grown Oxide in TBCs Under Chemical Oxidation Effect[J]. Applied Mathematics and Mechanics, 2015, 36(4): 404-413. doi: 10.3879/j.issn.1000-0887.2015.04.008
Citation: CHAI Yi-jun, LIN Chen, LI Yue-ming. Growth Trend of Thermal Grown Oxide in TBCs Under Chemical Oxidation Effect[J]. Applied Mathematics and Mechanics, 2015, 36(4): 404-413. doi: 10.3879/j.issn.1000-0887.2015.04.008

考虑化学氧化效应时热障涂层氧化物的生长规律

doi: 10.3879/j.issn.1000-0887.2015.04.008
基金项目: 国家重点基础研究发展计划(973计划)(2013CB035704); 国家自然科学基金(11472206)
详细信息
    作者简介:

    柴怡君(1991—),女,河南新乡人,硕士生(E-mail: cyj1991@stu.xjtu.edu.cn);李跃明(1961—),男,江苏无锡人,教授,博士生导师(通讯作者. E-mail: liyueming@mail.xjtu.edu.cn).

  • 中图分类号: O344

Growth Trend of Thermal Grown Oxide in TBCs Under Chemical Oxidation Effect

Funds: The National Basic Research Program of China(973 Program)(2013CB035704); The National Natural Science Foundation of China(11472206)
  • 摘要: 基于考虑氧化效应的Fick定律以及Voigt均匀性假设的氧化区两相材料的本构关系,开发了ABAQUS用户单元子程序.并基于重构的可反映热障涂层界面真实形貌的二维有限元模型,计算分析了氧化效应对TGO生长规律的影响,以及TC-TGO和BC-TGO界面的应力场分布.结果表明,未考虑氧化效应仅能获得TGO均匀生长的模拟结果,而考虑氧化效应得到了TGO的非均匀生长结果; 且考虑氧化效应相对于不考虑氧化效应时的界面应力处于较高水平. 此外,探索了氧化效应大小对TGO生长的影响规律, 发现氧化效应大则能促进TGO的不规则生长,氧化效应小则相反.
  • [1] Hille T S, Turteltaub S, Suiker A S J. Oxide grown and damage evolution in thermal barrier coatings[J].Engineering Fracture Mechanics,2011,78(10): 2139-2152.
    [2] Clarke D R, Oechsner M, Padture N P. Thermal barrier coatings for more efficient gas-turbine engines[J].Materials Research Society,2012,37(10): 891-898.
    [3] Belle W, Marijnissen G, Van Lieshout A. The evolution of thermal barrier coatings-status and upcoming solutions for today’s key issues[J].Surface and Coatings Technology,1999,120: 61-67.
    [4] Miller R A. Current status of thermal barrier coatings—an overview[J].Surface and Coatings Technology,1987,30(1): 1-11.
    [5] 杨帆, 刘彬, 方岱宁. 基于相场方法的铁基合金高温氧化与生长应力分析[J]. 应用数学和力学, 2011,32(6): 710-717.(YANG Fan, LIU Bin, FANG Dai-ning. Analysis on high-temperature oxidation and the growth stress of iron-based alloy using phase field method[J].Applied Mathematics and Mechanics,2011,32(6): 710-717.(in Chinese))
    [6] Karlsson A M, Hutchinson J W, Evans A G. A fundamental model of cyclic instabilities in thermal barrier systems[J].Journal of the Mechanics and Physics of Solids,2002,50(8): 1565-1589.
    [7] 黄霞, 丁军, 曾祥国. 热障涂层系统中TGO应力生成的数值模拟[J]. 机械设计与制造, 2007 (12): 199.(HUANG Xia, DING Jun, ZENG Xiang-guo. Numerical simulation of stress generated in TGO in thermal barrier systems[J].Machinery Design & Manufacture,2007(12): 199.(in Chinese))
    [8] 华佳捷, 张丽鹏, 刘紫薇, 王墉哲, 林初城, 曾毅, 郑学斌. 热障涂层失效机理研究进展[J]. 无机材料学报, 2012,27(7): 680-686.(HUA Jia-jie, ZHANG Li-peng, LIU Zi-wei, WANG Yong-zhe, LIN Chu-cheng, ZENG Yi, ZHENG Xue-bin. Progress of research on the failure mechanism of thermal barrier coatings[J].Journal of Inorganic Materials,2012,27(7): 680-686.(in Chinese))
    [9] 韩萌, 黄继华, 陈树海. 热障涂层应力与失效机理若干问题的研究进展与评述[J]. 航空材料学报, 2013,33(5): 83-98.(HAN Meng, HUANG Ji-hua, CHEN Shu-hai. Research progress and review on key problems of stress and failure mechanism of thermal barrier coating[J].Journal of Aeronautical Materials,2013,33(5): 83-98.(in Chinese))
    [10] HUANG Ming, LI Yue-ming. X-ray tomography image-based reconstruction of microstructural finite element mesh models for heterogeneous materials[J].Computational Materials Science,2013,67: 63-72.
    [11] Ulm F J, Coussy O, Li K F, Larive C. Thermal-chemo-mechanics of ASR-expansion in concrete structures[J].Journal of Engineering Mechanics-ASCE,2000,126(3): 233-242.
    [12] 林晨, 黄明, 李跃明. 考虑微观真实结构特征的热障涂层系统化学-热-力学三场耦合失效机理研究[C]//CSTAM2013-A31-1949, 中国力学大会-2013, 西安, 2013.(LIN Chen, HUANG Ming, LI Yue-ming. The research on the failure mechanisms under chemo-thermal-mechanical coupled affect in thermal barrier coatings based on the real microstructures features[C]//CSTAM2013-A31-1949,Chinese Conference of Theoretical and Applied Mechanics -2013,Xi’an, 2013.(in Chinese))
    [13] Dormieux L, Kondo D, Ulm F J.Microporomechaines [M]. John Wiley & Sons, 2006.
    [14] Busso E P, Qian Z Q, Taylor M P, Evans H E. The influence of bondcoat and topcoat mechanical properties on stress development in thermal barrier coating systems[J].Acta Materialia,2009,57(8): 2349-2361.
    [15] Loeffel K, Anand L, Gasem Z M. On modeling the oxidation of high-temperature alloys[J].Acta Materialia,2013,61(2): 399-424.
    [16] Rosler J, Bker M, Volgmann M. Stress state and failure mechanisms of thermal barrier coatings: role of creep in thermal grown oxide[J].Acta Materialia,2001,49(18): 3659-3670.
    [17] Martena M, Botto D, Fino P,Sabbadini S, Gola M M, Badini C. Modeling of TBC system failure: stress distribution as a function of TGO thickness and thermal expansion mismatch[J].Engineering Failure Analysis,2006,13(3): 409-426.
    [18] Evans A G, Mumm D R, Hutchinson J W, Meier G H, Pettit F S. Mechanisms controlling the durability of thermal barrier coatings[J].Progress in Materials Science,2001,46(5): 505-553.
    [19] Evans H E. Oxidation failure of TBC systems:an assessment of mechanisms[J].Surface and Coatings Technology,2011,206(7): 1512-1521.
    [20] Busso E P, Lin J, Sakurai S. A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system—part I: model formulation[J].Acta Materilia,2001,49(9): 1515-1528.
  • 加载中
计量
  • 文章访问数:  1505
  • HTML全文浏览量:  149
  • PDF下载量:  961
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-24
  • 修回日期:  2015-01-06
  • 刊出日期:  2015-04-15

目录

    /

    返回文章
    返回