[1] |
Peery K M, Imlay S T. Blunt body flow simulations[C]// AIAA/SAE/ASME/ASEE 〖STBX〗24th Joint Propulsion Conference.AIAA-88-2904, 1988.
|
[2] |
Quirk J J. A contribution to the great Riemann solver debate[J].International Journal for Numerical Methods in Fluids,1994,18(6): 555-574.
|
[3] |
Liou M S. Mass flux scheme and connection to shock instability[J].Journal of Computational Physics,2000,160(2): 623-648.
|
[4] |
XU Kun. Gas-kinetic schemes for unsteady compressible flow simulations[R]. von Karman Institute for Fluid Dynamics Lecture Series, 1998: 1-10.
|
[5] |
Dumbser M, Moschetta J M, Gressier J. A matrix stability analysis of the carbuncle phenomenon[J].Journal of Computational Physics,2004,197(2): 647-670.
|
[6] |
Moschetta J M, Gressier J, Robinet J C, Casalis G. The carbuncle phenomenon: a genuine Euler instability?[C]//Toro E F ed.Godunov Methods: Theory and Applications,1995: 639-645.
|
[7] |
Lin H C. Dissipation addition to flux-difference splitting[J].Journal of Computational Physics,1995,117(1): 20-25.
|
[8] |
Pandolfi M, D’Ambrosio D. Numerical instabilities in upwind methods: analysis and cures for the “carbuncle” phenomenon[J].Journal of Computational Physics,2001,166(2): 271-301.
|
[9] |
REN Yu-xin. A robust shock-capturing scheme based on rotated Riemann solvers[J].Computers & Fluids,2003,32(10): 1379-1403.
|
[10] |
刘友琼, 封建湖, 任炯, 龚承启. 求解多维Euler方程的二阶旋转混合型格式[J]. 应用数学和力学, 2014,35(5): 542-553. (LIU You-qiong, FENG Jian-hu, REN Jiong, GONG Cheng-qi. A second-order rotated hybrid scheme for solving multi-dimensional compressible Euler equations[J].Applied Mathematics and Mechanics,2014,35(5): 542-553.(in Chinese))
|
[11] |
Kim S D, Lee B J, Lee H J, Jeung I S. Robust HLLC Riemann solver with weighted average flux scheme for strong shock[J].Journal of Computational Physics,2009,228(20): 7634-7642.
|
[12] |
沈智军, 胡立军, 闫伟. 二维浅水波方程的数值激波不稳定性[J]. 计算物理, 2012,29(1): 25-35.(SHEN Zhi-jun, HU Li-jun, YAN Wei. Numerical shock instability for 2-D shallow water equations[J].Chinese Journal of Computational Physics,2012,29(1): 25-35.(in Chinese))
|
[13] |
WU Hao, SHEN Long-jun, SHEN Zhi-jun. A hybrid numerical method to cure numerical shock instability[J].Communications in Computational Physics,2010,8(5): 1264-1271.
|
[14] |
Toro E F.Riemann Solvers and Numerical Methods for Fluid Dynamics [M]. 3rd ed. Springer, 2009: 597-621.
|
[15] |
胡立军. 二维浅水波方程和欧拉方程数值激波不稳定性分析[D]. 硕士学位论文. 绵阳: 中国工程物理研究院, 2011.(HU Li-jun. Numerical shock instability of two dimensional shallow water equations and Euler equations[D]. Master Thesis. Mianyang: China Academy of Engineering Physics, 2011.(in Chinese))
|
[16] |
LI Bin, YUAN Li. Convergence issues in using high-resolution schemes and lower-upper symmetric Gauss-Seidel method for steady shock-induced combustion problems[J].International Journal for Numerical Methods in Fluids,2013,71(11): 1422-1437.
|
[17] |
Kitamura K, Roe P, Ismail F. An evaluation of Euler fluxes for hypersonic flow computations[C]//18th AIAA Computational Fluid Dynamics Conference.AIAA 2007-4465, 2007.
|
[18] |
Woodward P, Colella P. The numerical simulation of two dimensional fluid flow with strong shocks[J].Journal of Computational Physics,1984,54(1): 115-173.
|
[19] |
Lax P D, LIU Xu-dong. Solution of two-dimensional Riemann problems of gas dynamics by positive schemes[J].SIAM Journal on Scientific Computing,1998,19(2): 319-340.
|