留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种治愈强激波数值不稳定性的混合方法

胡立军 袁礼

胡立军, 袁礼. 一种治愈强激波数值不稳定性的混合方法[J]. 应用数学和力学, 2015, 36(5): 482-493. doi: 10.3879/j.issn.1000-0887.2015.05.004
引用本文: 胡立军, 袁礼. 一种治愈强激波数值不稳定性的混合方法[J]. 应用数学和力学, 2015, 36(5): 482-493. doi: 10.3879/j.issn.1000-0887.2015.05.004
HU Li-jun, YUAN Li. Analysis of Numerical Shock Instability and a Hybrid Curing Method[J]. Applied Mathematics and Mechanics, 2015, 36(5): 482-493. doi: 10.3879/j.issn.1000-0887.2015.05.004
Citation: HU Li-jun, YUAN Li. Analysis of Numerical Shock Instability and a Hybrid Curing Method[J]. Applied Mathematics and Mechanics, 2015, 36(5): 482-493. doi: 10.3879/j.issn.1000-0887.2015.05.004

一种治愈强激波数值不稳定性的混合方法

doi: 10.3879/j.issn.1000-0887.2015.05.004
基金项目: 国家重点基础研究发展计划(973计划)(2010CB731505);国家自然科学基金(面上项目)(10972230);创新群体项目(11321061);国际(地区)合作与交流项目(11261160486)
详细信息
    作者简介:

    胡立军(1985—),男,湖南人,博士生(E-mail: hulijun@lsec.cc.ac.cn);袁礼(1963—),男,重庆人,研究员,博士,博士生导师(通讯作者. E-mail: lyuan@lsec.cc.ac.cn).

  • 中图分类号: O354;O241.82

Analysis of Numerical Shock Instability and a Hybrid Curing Method

Funds: The National Basic Research Program of China (973 Program)(2010CB731505);The National Natural Science Foundation of China(General Program)(10972230)
  • 摘要: HLLC(Harten-Lax-Leer-contact)格式是一种高分辨率格式,能够准确捕捉激波、接触间断和稀疏波.但是使用HLLC格式计算多维问题时,在强激波附近会出现激波不稳定现象.FORCE(first-order centred)格式在强激波附近表现出很好的稳定性,并且其数值耗散比HLL(Harten-Lax-Leer)格式小.分析了HLLC格式和FORCE格式在特定流动条件下的稳定性,构造了HLLC-FORCE混合格式并且进一步结合开关函数来消除HLLC格式的激波不稳定现象.数值试验表明新构造的混合格式不仅能够消除HLLC格式的激波不稳定现象,还最大程度地保留HLLC格式高分辨率的优点.
  • [1] Peery K M, Imlay S T. Blunt body flow simulations[C]// AIAA/SAE/ASME/ASEE 〖STBX〗24th Joint Propulsion Conference.AIAA-88-2904, 1988.
    [2] Quirk J J. A contribution to the great Riemann solver debate[J].International Journal for Numerical Methods in Fluids,1994,18(6): 555-574.
    [3] Liou M S. Mass flux scheme and connection to shock instability[J].Journal of Computational Physics,2000,160(2): 623-648.
    [4] XU Kun. Gas-kinetic schemes for unsteady compressible flow simulations[R]. von Karman Institute for Fluid Dynamics Lecture Series, 1998: 1-10.
    [5] Dumbser M, Moschetta J M, Gressier J. A matrix stability analysis of the carbuncle phenomenon[J].Journal of Computational Physics,2004,197(2): 647-670.
    [6] Moschetta J M, Gressier J, Robinet J C, Casalis G. The carbuncle phenomenon: a genuine Euler instability?[C]//Toro E F ed.Godunov Methods: Theory and Applications,1995: 639-645.
    [7] Lin H C. Dissipation addition to flux-difference splitting[J].Journal of Computational Physics,1995,117(1): 20-25.
    [8] Pandolfi M, D’Ambrosio D. Numerical instabilities in upwind methods: analysis and cures for the “carbuncle” phenomenon[J].Journal of Computational Physics,2001,166(2): 271-301.
    [9] REN Yu-xin. A robust shock-capturing scheme based on rotated Riemann solvers[J].Computers & Fluids,2003,32(10): 1379-1403.
    [10] 刘友琼, 封建湖, 任炯, 龚承启. 求解多维Euler方程的二阶旋转混合型格式[J]. 应用数学和力学, 2014,35(5): 542-553. (LIU You-qiong, FENG Jian-hu, REN Jiong, GONG Cheng-qi. A second-order rotated hybrid scheme for solving multi-dimensional compressible Euler equations[J].Applied Mathematics and Mechanics,2014,35(5): 542-553.(in Chinese))
    [11] Kim S D, Lee B J, Lee H J, Jeung I S. Robust HLLC Riemann solver with weighted average flux scheme for strong shock[J].Journal of Computational Physics,2009,228(20): 7634-7642.
    [12] 沈智军, 胡立军, 闫伟. 二维浅水波方程的数值激波不稳定性[J]. 计算物理, 2012,29(1): 25-35.(SHEN Zhi-jun, HU Li-jun, YAN Wei. Numerical shock instability for 2-D shallow water equations[J].Chinese Journal of Computational Physics,2012,29(1): 25-35.(in Chinese))
    [13] WU Hao, SHEN Long-jun, SHEN Zhi-jun. A hybrid numerical method to cure numerical shock instability[J].Communications in Computational Physics,2010,8(5): 1264-1271.
    [14] Toro E F.Riemann Solvers and Numerical Methods for Fluid Dynamics [M]. 3rd ed. Springer, 2009: 597-621.
    [15] 胡立军. 二维浅水波方程和欧拉方程数值激波不稳定性分析[D]. 硕士学位论文. 绵阳: 中国工程物理研究院, 2011.(HU Li-jun. Numerical shock instability of two dimensional shallow water equations and Euler equations[D]. Master Thesis. Mianyang: China Academy of Engineering Physics, 2011.(in Chinese))
    [16] LI Bin, YUAN Li. Convergence issues in using high-resolution schemes and lower-upper symmetric Gauss-Seidel method for steady shock-induced combustion problems[J].International Journal for Numerical Methods in Fluids,2013,71(11): 1422-1437.
    [17] Kitamura K, Roe P, Ismail F. An evaluation of Euler fluxes for hypersonic flow computations[C]//18th AIAA Computational Fluid Dynamics Conference.AIAA 2007-4465, 2007.
    [18] Woodward P, Colella P. The numerical simulation of two dimensional fluid flow with strong shocks[J].Journal of Computational Physics,1984,54(1): 115-173.
    [19] Lax P D, LIU Xu-dong. Solution of two-dimensional Riemann problems of gas dynamics by positive schemes[J].SIAM Journal on Scientific Computing,1998,19(2): 319-340.
  • 加载中
计量
  • 文章访问数:  1538
  • HTML全文浏览量:  135
  • PDF下载量:  750
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-04
  • 修回日期:  2015-01-13
  • 刊出日期:  2015-05-15

目录

    /

    返回文章
    返回