留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚合物时温等效模型有限元应用研究

许进升 杨晓红 赵磊 王鸿丽 韩龙

许进升, 杨晓红, 赵磊, 王鸿丽, 韩龙. 聚合物时温等效模型有限元应用研究[J]. 应用数学和力学, 2015, 36(5): 539-547. doi: 10.3879/j.issn.1000-0887.2015.05.009
引用本文: 许进升, 杨晓红, 赵磊, 王鸿丽, 韩龙. 聚合物时温等效模型有限元应用研究[J]. 应用数学和力学, 2015, 36(5): 539-547. doi: 10.3879/j.issn.1000-0887.2015.05.009
XU Jin-sheng, YANG Xiao-hong, ZHAO Lei, WANG Hong-li, HAN Long. Finite Element Application of the Time-Temperature Superposition Principle (TTSP) to Polymer[J]. Applied Mathematics and Mechanics, 2015, 36(5): 539-547. doi: 10.3879/j.issn.1000-0887.2015.05.009
Citation: XU Jin-sheng, YANG Xiao-hong, ZHAO Lei, WANG Hong-li, HAN Long. Finite Element Application of the Time-Temperature Superposition Principle (TTSP) to Polymer[J]. Applied Mathematics and Mechanics, 2015, 36(5): 539-547. doi: 10.3879/j.issn.1000-0887.2015.05.009

聚合物时温等效模型有限元应用研究

doi: 10.3879/j.issn.1000-0887.2015.05.009
基金项目: 江苏省自然科学基金(BK20140772)
详细信息
    作者简介:

    许进升(1985—),男,江苏泰州人,讲师,博士(通讯作者. E-mail: xujinsheng@njust.edu.cn).

  • 中图分类号: V512

Finite Element Application of the Time-Temperature Superposition Principle (TTSP) to Polymer

  • 摘要: 为更好地描述聚合物材料力学性能的温度相关性问题,对目前广泛应用的WLF模型进行改进研究,并引入“零时间”因子提高了粘弹性材料变温松弛模量的获取精度.在此基础上基于ABAQUS用户材料子程序UTRS将时温等效模型应用到数值计算中.根据不同温度水平下的应力松弛实验获得模型参数,并通过等速拉伸实验与数值结果的对比验证了该模型及其有限元方法的可行性及正确性.结果表明:引入“零时间”因子的变温松弛模量精度更高;改进WLF模型对复合推进剂具有更好的适用性和更高的精确度.
  • [1] 刘长春, 吕和祥, 关萍. 混凝土材料的粘塑性损伤本构模型[J]. 应用数学和力学, 2007,28(9): 1021-1027.(LIU Chang-chun, Lü He-xiang, GUAN Ping. Coupled viscoplasticity damage constitutive model for concrete materials[J]. Applied Mathematics and Mechanics,2007,28(9): 1021-1027.(in Chinese))
    [2] 李丹, 胡更开. 高体积百分比颗粒增强聚合物材料的有效粘弹性性质[J]. 应用数学和力学, 2007,28(3): 270-280.(LI Dan, HU Geng-kai. Effective viscoelastic behavior of particulate polymer composites at finite concentration[J].Applied Mathematics and Mechanics,2007,28(3): 270-280.(in Chinese))
    [3] 许进升, 鞠玉涛, 郑健, 韩波. 复合固体推进剂松弛模量的获取方法[J]. 火炸药学报, 2011,34(5): 58-62.(XU Jin-sheng, JU Yu-tao, ZHENG Jian, HAN Bo. Acquisition of the relaxation modulus of composite solid propellant[J].Chinese Journal of Explosives & Propellants,2011,34(5): 58-62.(in Chinese))
    [4] XU Jin-sheng, CHEN Xiong, WANG Hong-li, ZHENG Jian, ZHOU Chang-sheng. Thermo-damage-viscoelastic constitutive model of HTPB composite propellant[J].International Journal of Solids and Structures,2014,51(18): 3209-3217.
    [5] Park S W, Schapery R A. A viscoelastic constitutive model for particulate composites with growing damage[J].International Journal of Solids and Structures,1997,34(8): 931-947.
    [6] 蔡艳红, 陈浩然, 唐立强, 闫澄, 江莞. 剪切载荷作用下含损伤胶接材料界面动应力强度因子的研究[J]. 应用数学和力学, 2008,29(11): 1376-1386.(CAI Yan-hong, CHEN Hao-ran, TANG Li-qiang, YAN Cheng, JIANG Wan. Dynamic stress intensity factor analysis of adhesively bonded material interface with damage under shear loading[J].Applied Mathematics and Mechanics,2008,29(11): 1376-1386.(in Chinese))
    [7] CHYUAN Shiang-woei. Nonlinear thermoviscoelastic analysis of solid propellant grains subjected to temperature loading[J].Finite Elements in Analysis and Design,2002,38(7): 613-630.
    [8] 郑健龙, 钱国平, 应荣华. 沥青混合料热粘弹性本构关系试验测定及其力学应用[J]. 工程力学, 2008,25(1): 34-41.(ZHENG Jian-long, QIAN Guo-ping, YING Rong-hua. Testing thermalviscoelastic constitutive relation of asphalt mixtures and its mechanical applications[J].Engineering Mechanics,2008,25(1): 34-41.(in Chinese))
    [9] 钱国平, 郑健龙, 周志刚, 田小革. 沥青混合料增量型热粘弹性本构关系研究[J]. 应用力学学报, 2006,23(3): 338-343.(QIAN Guo-ping, ZHENG Jian-long, ZHOU Zhi-gang, TIAN Xiao-ge. Incremental thermalviscoelastic constitutive relation of asphalt mixtures[J].Chinese Journal of Applied Mechanicals,2006,23(3): 338-343.(in Chinese))
    [10] Nevière R. An extension of the time-temperature superposition principle to non-linear viscoelastic solids[J].International Journal of Solids and Structures,2006,43(17): 5295-5306.
    [11] Dagdug L, García-Colín L S. Generalization of the Williams-Landel-Ferry equation[J].Physica A : Statistical Mechanics and Its Applications,1998,250(1/2): 133-141.
    [12] Salmén L. Viscoelastic properties of in situ lignin under water-saturated conditions[J].Journal of Materials Science,1984,19(9): 3090-3096.
    [13] Peydró M A, Parres F, Crespo J E, Juárez D. Study of rheological behavior during the recovery process of high impact polystyrene using cross-WLF model[J].Journal of Applied Polymer Science,2011,120(4): 2400-2410.
    [14] CHANG Feng-cheng, Lam F, Kadla J F. Application of time-temperature-stress superposition on creep of wood-plastic composites[J].Mechanics of Time-Dependent Materials,2013,17(3): 427-437.
    [15] XU Jin-sheng, JU Yu-tao, HAN Bo, ZHOU Chang-sheng, ZHENG Jian. Research on relaxation modulus of viscoelastic materials under unsteady temperature states based on TTSP[J].Mechanics of Time-Dependent Materials,2013,17(4): 543-556.
    [16] Williams M L, Landel R F, Ferry J D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids[J].Journal of the American Chemical Society,1955,77(14): 3701-3707.
  • 加载中
计量
  • 文章访问数:  1882
  • HTML全文浏览量:  208
  • PDF下载量:  1658
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-11
  • 修回日期:  2014-12-17
  • 刊出日期:  2015-05-15

目录

    /

    返回文章
    返回