Sub-Equations and Exact Traveling Wave Solutions to a Class of High-Order Nonlinear Wave Equations
-
摘要: 结合子方程和动力系统分析的方法研究了一类五阶非线性波方程的精确行波解.得到了这类方程所蕴含的子方程, 并利用子方程在不同参数条件下的精确解, 给出了研究这类高阶非线性波方程行波解的方法, 并以SawadaKotera方程为例, 给出了该方程的两组精确谷状孤波解和两组光滑周期波解.该研究方法适用于形如对应行波系统可以约化为只含有偶数阶导数、一阶导数平方和未知函数的多项式形式的高阶非线性波方程行波解的研究.Abstract: The exact traveling wave solutions to a class of 5th-order nonlinear wave equations were studied with the sub-equation method and the dynamic system analysis approach. The lower-order sub-equations of this class of high-order nonlinear equations were first derived, then the traveling wave solutions were investigated via the various exact solutions to the sub-equations under different parameter conditions. As an example, 2 families of exact valley-form solitary wave solutions and 2 families of smooth periodic traveling wave solutions to the Sawada-Kotera equation were presented. This method can be applied to study the traveling wave solutions to high-order nonlinear wave equations of which the corresponding traveling wave system can be reduced to the nonlinear ODEs involving only even-order derivatives, sum of squares of 1st-order derivatives and polynomial of dependent variables.
-
[1] Chow S N, Hale J K. Method of Bifurcation Theory[M]. New York: Springer, 1981. [2] LI Ji-bin. Singular Traveling Wave Equations: Bifurcations and Exact Solutions[M]. Beijing: Science Press, 2013. [3] LI Ji-bin, QIAO Zhi-jun. Explicit solutions of the Kaup-Kupershmidt equation through the dynamical system approach[J]. Journal of Applied Analysis and Computation,2011,1(2): 243-250. [4] 冯大河, 李继彬. Jaulent-Miodek方程的行波解分支[J]. 应用数学和力学, 2007,28(8): 894-900.(FENG Da-he, LI Ji-bin. Bifurcations of travelling wave solutions for Jaulent-Miodek equations[J]. Applied Mathematics and Mechanics,2007,28(8): 894-900.(in Chinese)) [5] Sawada K, Kotera T. A method for finding N-soliton solutions for the K.d.V. equation and K.d.V.-like equation[J]. Progress of Theoretical Physics,1974,51(5): 1355-1367. [6] Caudrey P J, Dodd R K, Gibbon J D. A new hierarchy of Korteweg-de Vries equations[J]. The Proceedings of the Royal Society of London,1976,351(1666): 407-422. [7] Kupershmidt B A. A super Korteweg-de Vires equation: an integrable system[J]. Physics Letters A,1984,102(5/6): 213-215. [8] ZHANG Li-jun, Khalqiue C M. Exact solitary wave and periodic wave solutions of the Kaup-Kupershmidt equation[J]. Journal of Applied Analysis and Computation,2015,5(3): 485-495. [9] Cosgrove M C. Higher-order Painleve equations in the polynomial class I: Bureau symbol P2[J]. Studies in Applied Mathematics,2000,104(1): 1-65.
计量
- 文章访问数: 1321
- HTML全文浏览量: 142
- PDF下载量: 813
- 被引次数: 0