留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有领导者的非线性分数阶多智能体系统的一致性分析

朱伟 陈波

朱伟, 陈波. 具有领导者的非线性分数阶多智能体系统的一致性分析[J]. 应用数学和力学, 2015, 36(5): 555-562. doi: 10.3879/j.issn.1000-0887.2015.05.011
引用本文: 朱伟, 陈波. 具有领导者的非线性分数阶多智能体系统的一致性分析[J]. 应用数学和力学, 2015, 36(5): 555-562. doi: 10.3879/j.issn.1000-0887.2015.05.011
ZHU Wei, CHEN Bo. Leader-Following Consensus of Fractional-Order Multi-Agent Systems With Nonlinear Models[J]. Applied Mathematics and Mechanics, 2015, 36(5): 555-562. doi: 10.3879/j.issn.1000-0887.2015.05.011
Citation: ZHU Wei, CHEN Bo. Leader-Following Consensus of Fractional-Order Multi-Agent Systems With Nonlinear Models[J]. Applied Mathematics and Mechanics, 2015, 36(5): 555-562. doi: 10.3879/j.issn.1000-0887.2015.05.011

具有领导者的非线性分数阶多智能体系统的一致性分析

doi: 10.3879/j.issn.1000-0887.2015.05.011
基金项目: 重庆市自然科学基金基础与前沿研究项目(cstc2013jcyjA00026);重庆市高等学校优秀人才支持计划项目
详细信息
    作者简介:

    朱伟(1976—),男,四川荣县人,教授,博士,硕士生导师(通讯作者. E-mail: zhuwei@cqupt.edu.cn);陈波(1989—),男,四川乐山人,硕士生(E-mail: S12060201@stu.cqupt.edu.cn).

  • 中图分类号: TP18

Leader-Following Consensus of Fractional-Order Multi-Agent Systems With Nonlinear Models

  • 摘要: 研究了利用非线性分数阶模型描述的具有领导者的多智能体系统的一致性问题.基于智能体之间的通讯拓扑图,设计了系统的控制协议和相应的控制增益矩阵.利用广义Gronwall不等式和分数阶微分方程的稳定性理论,得到了多智能体系统达到一致的充分条件.最后,数值仿真结果显示了理论结果的有效性.
  • [1] DeGroot M H. Reaching a consensus[J].Journal of the American Statistical Association,1974,69(345): 118-121.
    [2] Vicsek T, Czirók A , Ben-Jacob E, Cohen I, Shochet O. Novel type of phase transitions in a system of self-driven particles[J].Physical Review Letters,1995,75(6): 1226-1229.
    [3] Borkar V, Varaiya P. Asymptotic agreement in distributed estimation[J].IEEE Transactions on Automatic Control,1982,27(3): 650-655.
    [4] Tsitsiklis J N, Bertsekas D P, Athans M. Distributed asynchronous deterministic and stochastic gradient optimization algorithms[J].IEEE Transactions on Automatic Control,1986,31(9): 803-812.
    [5] Podlubny I.Fractional Differential Equations [M]. New York: Academic Press, 1999.
    [6] Hilfer R. Applications of fractional calculus in physics[C]//Word Scientific,Singapore, 2000.
    [7] 杨绪君, 宋乾坤. 时不变分数阶系统反周期解的存在性[J]. 应用数学和力学, 2014,35(6): 684-691.(YANG Xu-jun, SONG Qian-kun. On the existence of anti-periodic solutions in time-invariant fractional order systems[J].Applied Mathematics and Mechanics,2014,35(6): 684-691. (in Chinese))
    [8] 孙春艳, 徐伟. 随机分数阶微分方程初值问题基于模拟方程法的数值求解[J]. 应用数学和力学, 2014,35(10): 1092-1099.(SUN Chun-yan, XU Wei. An analog equation method-based numerical scheme for initial value problems of stochastic fractional differential equations[J].Applied Mathematics and Mechanics,2014,35(10): 1092-1099.(in Chinese))
    [9] Cervin A, Henningsson T. Scheduling of event-triggered controllers on a shared network[C]//47th IEEE Conference on Decision and Control . Cancun, Mexico, 2008: 3601-3606.
    [10] Heemels W P M H, Sandee J H, Van Den Bosch P P J. Analysis of event-driven controllers for linear systems[J].International Journal of Control,2008,81(4): 571-590.
    [11] Shen J, Cao J, Lu J. Consensus of fractional-order systems with non-uniform input and communication delays[J].Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,2012,226(12): 271-283.
    [12] Shen J,Cao J. Necessary and sufficient conditions for consensus of delayed fractional-order systems[J].Asian Journal of Control,2012,6(14): 1690-1697.
    [13] Yin X X, Hu S L. Consensus of fractional-order uncertain multi-agent systems based on output feedback[J].Asian Journal of Control,2013,5(15): 1538-1542.
    [14] Li H J. Observer-type consensus protocol for a class of fractional-order uncertain multi-agent systems[J].Abstract and Applied Analysis,2012,2012(S), Article ID 672346.
    [15] Sun W, Chen Y Q, Li C P. Multi-group consensus of heterogeneous fractional-order nonlinear agents via pinning control[C]// ASME International Design Engineering Technical Conference and Computers and Information in Engineering Conference. Washington DC, USA, 2011: 377-383.
    [16] De la Sen M. About robust stability of Caputo linear fractional dynamic systems with time delays through fixed point theory[J].Fixed Point Theory and Applications,2011,2011, Article ID 867932.
    [17] Ye H P, Gao J M, Ding Y S. A generalized Gronwall inequality and its application to a fractional differential equation[J].Journal of Mathematical Analysis and Applications,2007,328(2): 1075-1081.
  • 加载中
计量
  • 文章访问数:  1946
  • HTML全文浏览量:  349
  • PDF下载量:  1211
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-10
  • 刊出日期:  2015-05-15

目录

    /

    返回文章
    返回