留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加性二值噪声激励下Duffing系统的随机分岔

武娟 许勇

武娟, 许勇. 加性二值噪声激励下Duffing系统的随机分岔[J]. 应用数学和力学, 2015, 36(6): 593-599. doi: 10.3879/j.issn.1000-0887.2015.06.003
引用本文: 武娟, 许勇. 加性二值噪声激励下Duffing系统的随机分岔[J]. 应用数学和力学, 2015, 36(6): 593-599. doi: 10.3879/j.issn.1000-0887.2015.06.003
WU Juan, XU Yong. Stochastic Bifurcations in a Duffing System Driven by Additive Dichotomous Noises[J]. Applied Mathematics and Mechanics, 2015, 36(6): 593-599. doi: 10.3879/j.issn.1000-0887.2015.06.003
Citation: WU Juan, XU Yong. Stochastic Bifurcations in a Duffing System Driven by Additive Dichotomous Noises[J]. Applied Mathematics and Mechanics, 2015, 36(6): 593-599. doi: 10.3879/j.issn.1000-0887.2015.06.003

加性二值噪声激励下Duffing系统的随机分岔

doi: 10.3879/j.issn.1000-0887.2015.06.003
基金项目: 国家自然科学基金(11372247;11102157)
详细信息
    作者简介:

    武娟(1987—),女,陕西人,硕士(通讯作者. E-mail: juanwuxixi@gmail.com).

  • 中图分类号: O322

Stochastic Bifurcations in a Duffing System Driven by Additive Dichotomous Noises

Funds: The National Natural Science Foundation of China(11372247;11102157)
  • 摘要: 研究了Duffing系统在加性二值噪声作用下的随机分岔现象.首先,根据二值噪声的统计特性,推导得到二值噪声状态间的跃迁概率,据此对二值噪声进行了数值模拟.其次,利用四阶Runge-Kutta(龙格-库塔)数值算法得到该系统位移和速率的稳态联合概率密度及位移的稳态概率密度.然后,通过对位移稳态概率密度单双峰结构变化的研究,发现加性二值噪声的状态和强度能够诱导系统产生随机分岔现象.最后,观察到随着系统非对称参数的逐渐变化,系统同样产生了随机分岔现象.
  • [1] 胡岗. 随机力与非线性系统[M]. 上海: 上海科技教育出版社, 1994.(HU Gang. Advanceed Series in Nonlinear Science Stochastic Forces and Nonlinear Systems[M]. Shanghai: Shanghai Scientific and Technological Education Publishing House, 1994.(in Chinese))
    [2] 朱位秋. 几类非线性系统对白噪声参激与/或外激平稳响应的精确解[J]. 应用数学和力学, 1990,11(2): 155-164.(ZHU Wei-qiu. Exact solutions for stationary responses of several classes of nonlinear systems to parametric and/or external white noise excitations[J]. Applied Mathematics and Mechanics,1990,11(2): 155-164.(in Chinese))
    [3] WU Zhao-hua, Huang N E. A study of the characteristics of white noise using the empirical mode decomposition method[J]. Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences,2004,460(2046): 1597-1611.
    [4] Vitrenko A N. Exactly solvable nonlinear model with two multiplicative Gaussian colored noises[J]. Physica A: Statistical Mechanics and Its Applications,2006,359: 65-74.
    [5] Gardiner C W. Handbook of Stochastic Methods: for Physics, Chemistry and the Nature Science [M]. Heidelberg, Berlin, Germany: Sprillger-Verlag, 1983: 78.
    [6] XU Yong, WU Juan, ZHANG Hui-qing, MA Shao-juan. Stochastic resonance phenomenon in an underdamped bistable system driven by weak asymmetric dichotomous noise[J]. Nonlinear Dynamics,2012,70(1): 531-539.
    [7] LI Jing-hui, HAN Yin-xia. Phenomenon of stochastic resonance caused by multiplicative asymmetric dichotomous noise[J]. Physical Review E,2006,74(5): 051115.
    [8] XU Yong, JIN Xiao-qin, ZHANG Hui-qing, YANG Ting-ting. The availability of logical operation induced by dichotomous noise for a nonlinear bistable system[J]. Journal of Statistical Physics,2013,152(4): 753-768.
    [9] JIN Yan-fei. Noise-induced dynamics in a delayed bistable system with correlated noises[J]. Physica A: Statistical Mechanics and Its Applications,2012,391(5): 1928-1933.
    [10] XU Yong, JIN Xiao-qin, ZHANG Hui-qing. Parallel logic gates in synthetic gene networks induced by non-Gaussian noise[J]. Physical Review E,2013,88(5): 052721.
    [11] Van den Broeck C, Parrondo J M R, Toral R. Noise-induced nonequilibrium phase transition[J]. Physical Review Letters,1994,73(25): 3395-3398.
    [12] Zakharova A, Vadivasova T, Anishchenko V, Koseska A, Kurths J. Stochastic bifurcations and coherencelike resonance in a self-sustained bistable noisy oscillator[J]. Physical Review E,2010,81(1): 011106.
    [13] XU Yong, FENG Jing, LI Juan-juan, ZHANG Hui-qing. Stochastic bifurcation for a tumor-immune system with symmetric Lévy noise[J]. Physica A: Statistical Mechanics and Its Applications,2013,392(20): 4739-4748.
    [14] 顾仁财, 许勇, 郝孟丽, 杨志强. Lévy稳定噪声激励下的Duffing-Van der Pol振子的随机分岔[J]. 物理学报, 2011,60(6): 060513.(GU Ren-cai, XU Yong, HAO Meng-li, YANG Zhi-qiang. Stochastic bifurcations in Duffing-Van der Pol oscillator with Lévy stable noise[J]. Acta Physica Sinica,2011,60(6): 060513.(in Chinese))
    [15] XU Yong, GU Ren-cai, ZHANG Hui-qing, XU Wei, DUAN Jin-qiao. Stochastic bifurcations in a bistable Duffing-Van der Pol oscillator with colored noise[J]. Physical Review E,2011,83(5): 056215.
    [16] XU Wei, HE Qun, FANG Tong, RONG Hai-wu. Stochastic bifurcation in Duffing system subject to harmonic excitation and in presence of random noise[J]. International Journal of Non-Linear Mechanics,2004,39(9): 1473-1479.
    [17] ZHU Wei-qiu, LU M Q, Wu Q T. Stochastic jump and bifurcation of a Duffing oscillator under narrow-band excitation[J]. Journal of Sound and Vibration,1993,165(2): 285-304.
    [18] Mallick K, Marcq P. Noise-induced reentrant transition of the stochastic Duffing oscillator[J].The European Physical Journal B,2004,38(1): 99-102.
    [19] GAN Chun-biao. Noise-induced chaos and basin erosion in softening Duffing oscillator[J]. Chaos, Solitons and Fractals,2005,25(5): 1069-1081.
    [20] Barik D, Ghosh P K, Ray D S. Langevin dynamics with dichotomous noise; direct simulation and applications[J]. Journal of Statistical Mechanics: Theory and Experiment,2006,2006: 03010.
  • 加载中
计量
  • 文章访问数:  925
  • HTML全文浏览量:  106
  • PDF下载量:  764
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-30
  • 修回日期:  2015-03-18
  • 刊出日期:  2015-06-15

目录

    /

    返回文章
    返回