留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑非局部剪切效应的碳纳米管弯曲特性研究

尹春松 杨洋

尹春松, 杨洋. 考虑非局部剪切效应的碳纳米管弯曲特性研究[J]. 应用数学和力学, 2015, 36(6): 600-606. doi: 10.3879/j.issn.1000-0887.2015.06.004
引用本文: 尹春松, 杨洋. 考虑非局部剪切效应的碳纳米管弯曲特性研究[J]. 应用数学和力学, 2015, 36(6): 600-606. doi: 10.3879/j.issn.1000-0887.2015.06.004
YIN Chun-song, YANG Yang. Shear Deformable Bending of Carbon Nanotubes Based on a New Analytical Nonlocal Timoshenko Beam Model[J]. Applied Mathematics and Mechanics, 2015, 36(6): 600-606. doi: 10.3879/j.issn.1000-0887.2015.06.004
Citation: YIN Chun-song, YANG Yang. Shear Deformable Bending of Carbon Nanotubes Based on a New Analytical Nonlocal Timoshenko Beam Model[J]. Applied Mathematics and Mechanics, 2015, 36(6): 600-606. doi: 10.3879/j.issn.1000-0887.2015.06.004

考虑非局部剪切效应的碳纳米管弯曲特性研究

doi: 10.3879/j.issn.1000-0887.2015.06.004
基金项目: 国家自然科学基金(11261026;11462010)
详细信息
    作者简介:

    尹春松(1989—),男,河南信阳人,硕士生(E-mail: 1147926281@qq.com);杨洋(1981—),男,昆明人,副教授,博士(通讯作者. E-mail: yangyang0416@kmust.edu.cn).

  • 中图分类号: O324;TB332

Shear Deformable Bending of Carbon Nanotubes Based on a New Analytical Nonlocal Timoshenko Beam Model

Funds: The National Natural Science Foundation of China(11261026;11462010)
  • 摘要: 基于Hamilton(哈密顿)变分原理和非局部连续介质弹性理论,建立了新型非局部Timoshenko(铁木辛柯)梁模型(ANT),推导了碳纳米管(CNT)的ANT弯曲平衡方程以及两端简支梁、悬臂梁和简支固定梁的边界条件表达式,分析了剪切变形效应和非局部微观尺度效应对碳纳米管弯曲特性的影响.数值计算结果显示,碳纳米管的弯曲刚度随着小尺度效应的增强而升高.其次,这种小尺度效应对自由端受集中力的悬臂梁碳纳米管有明显作用,其刚度变化规律和其它约束条件的碳纳米管一样,这一点是ANT模型区别于普通非局部纳米梁模型的主要特点.经分子动力学模拟验证,ANT模型是合理分析碳纳米管力学特性的有效方法.
  • [1] Iijima S. Helical microtubules of graphitic carbon[J].Nature,1991,354(7): 56-58.
    [2] Tomanek D, Enbody R J.Science and Application of Nanotubes [M]. US: Springer, 2000: 1-274.
    [3] Ajayan P M. Applications of carbon nanotubes[J].Topics in Applied Physics,2001,80: 391-425.
    [4] Lam D C C, Yang F, Chong A C M, Wang J, Tong P. Experiments and theory in strain gradient elasticity[J].Journal of the Mechanics and Phsics of Solids,2003,51(8): 1477-1508.
    [5] Wang Q, Liew K M, He X Q, Xiang Y. Local buckling of carbon nanotubes under bending[J].Applied Physics Letter,2007,91(9): 093128.
    [6] Ru C Q. Effective bending stiffness of carbon nanotubes[J].Physical Review B,2000,62: 9973-9976.
    [7] Aifantis E C. Gradient deformation models at nano micro and macro scales[J].Journal of Engineering Material Technology,1999,121(2): 189-202.
    [8] Ma H M, Reddy J N. A microstructure-dependent Timoshenko beam model based on a modified couple stress theory[J]. Journal of the Mechanics and Physics of Solids,2008,56(1): 3379-3391.
    [9] Peddieson J, Buchanan G R, McNitt R P. Application of nonlocal continuum models to nanotechnology[J].International Journal of Engeerning Science,2003,41(3): 305-312.
    [10] Reddy J N. Nonlocal theories for bending, buckling and vibration of beams[J].International Journal of Engeerning Science,2007,45(2/8): 288-307.
    [11] Wang Q, Liew K M. Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures[J].Physical Letter A,2007,363(3): 236-242.
    [12] Eringen A C.Nonlocal Continuum Field Theories [M]. US: Springer, 2002: 71-87.
    [13] C W 林. 基于非局部弹性应力场理论的纳米尺度效应研究: 纳米梁的平衡条件、控制方程以及静态挠度[J]. 应用数学和力学, 2010,31(1): 35-50.(Lim C W. On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection[J].Applied Mathematics and Mechanics,2010,31(1): 35-50.(in Chinese))
    [14] YANG Yang, Lim C W. A variation principle approach for buckling of carbon nanotubes based on nonlocal Timoshenko beam models[J].Nanotechnology,2011,6(4): 363-377.
    [15] Lim C W. Equilibrium and static deflection for bending of a nonlocal nanobeam[J].Advances in Vibration Engineering,2009,8(4): 277-300.
  • 加载中
计量
  • 文章访问数:  1460
  • HTML全文浏览量:  208
  • PDF下载量:  833
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-24
  • 修回日期:  2015-03-31
  • 刊出日期:  2015-06-15

目录

    /

    返回文章
    返回