留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带有圆柱形孔洞弹性半空间的表面效应分析

欧志英 武雅文

欧志英, 武雅文. 带有圆柱形孔洞弹性半空间的表面效应分析[J]. 应用数学和力学, 2015, 36(6): 607-615. doi: 10.3879/j.issn.1000-0887.2015.06.005
引用本文: 欧志英, 武雅文. 带有圆柱形孔洞弹性半空间的表面效应分析[J]. 应用数学和力学, 2015, 36(6): 607-615. doi: 10.3879/j.issn.1000-0887.2015.06.005
OU Zhi-ying, WU Ya-wen. Effects of Surface Stresses on Contact Problems of an Elastic Half Plane With a Circular Cavity[J]. Applied Mathematics and Mechanics, 2015, 36(6): 607-615. doi: 10.3879/j.issn.1000-0887.2015.06.005
Citation: OU Zhi-ying, WU Ya-wen. Effects of Surface Stresses on Contact Problems of an Elastic Half Plane With a Circular Cavity[J]. Applied Mathematics and Mechanics, 2015, 36(6): 607-615. doi: 10.3879/j.issn.1000-0887.2015.06.005

带有圆柱形孔洞弹性半空间的表面效应分析

doi: 10.3879/j.issn.1000-0887.2015.06.005
基金项目: 国家自然科学基金(11062004;11362009);甘肃省留学回国人员科研启动基金
详细信息
    作者简介:

    欧志英 (1970—),男, 湖南,教授(E-mail: zhiyingou@163.com)

  • 中图分类号: O29

Effects of Surface Stresses on Contact Problems of an Elastic Half Plane With a Circular Cavity

Funds: National Natural Science Foundation(11062004; 11362009); The Returned Overseas Scholars Fund of Gansu Province
  • 摘要: 针对表面应力在纳米结构控制机械响应中的重要性,利用复变函数的基本方法,研究了含有圆柱形孔洞的弹性半空间的表面应力问题.将含有缺陷的接触问题分解为均匀介质的接触问题和无外载荷的非均匀介质的接触问题两部分进行分析.结果显示:接触表面的应力和位移有很强的尺寸依赖性,同时表面位移可以用表面应力函数表示.
  • [1] Ou Z Y, Pang S D. Fundamental solutions to Hertzian contact problems at nanoscale[J].Acta Mechanica,2013,224(1): 109-121.
    [2] Verruijt A. Deformations of an elastic half plane with a circular cavity[J]. International Journal of Solids and Structures,1998,35(21): 2795-2804.
    [3] Ou Z Y, Wang G F, Wang T J. Effect of residual surface tension on the stress concentration around a nanosized spheroidal cavity[J]. International Journal of Engineering and Scientific Research,2008,46(5): 475-485.
    [4] Miri A K, Avazmohammadi R, YANG Fu-qian. Effect of surface stress on the deformation of an elastic half-plane containing a nano-cylindrical hole under a surface loading[J].Journal of Computational and Theoretical Nanoscience,2011,8(2): 231-236.
    [5] Wang G F, Feng X Q. Effects of surface stresses on contact problems at nanoscale[J].Journal of Applied Physics,2007,101(1): 013510.
    [6] WANG Gang-feng, FENG Xi-qiao. Effects of the surface elasticity and residual surface tension on the natural frequency of microbeams[J]. Applied Physics Letters,2009,90(23): 231904.
    [7] Gurtin M E. A general theory of curved deformable interfaces in solids at equilibrium[J]. Philosophical Magazine A,1998,78(5): 1093-1109.
    [8] Shenoy V B. Size-dependent rigidities of nanosized torsional elements[J]. International Journal of Solids and Structures,2002,39(15): 4039-4052.
    [9] Sharma P, Ganti S. Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities[J]. Applied Physics Letters,2003,82(4): 535-537.
    [10] Sharma P, Ganti S. Size-dependent Eshelby’s tensor for embedded nanoinclusions incorporating surface/interface energies[J]. Journal of Applied Mechanics,2004,71(5): 663-671.
    [11] Jammes M, Mogilevskaya S G, Crouch S L. Multiple circular nano-inhomogeneities and/or nano-pores in one of two joined isotropic elastic half-planes[J]. Engineering Analysis With Boundary Elements,2009,33(2): 233-248.
    [12] Wang L G, Kratzer P, Scheffler M, Moll N. Formation and stability of self-assembled coherent islands in highly mismatched heteroepitaxy[J]. Physical Review Letters,1999,82(20): 4042-4045.
    [13] Farrokhabadi A, Koochi A. Effects of size-dependent elasticity on stability of nanotweezers[J]. Applied Mathematics and Mechanics(English Edition),2014,35(12): 1573-1590.
    [14] Amirian B, Hosseini-Ara R, Moosavi H. Surface and thermal effects on vibration of embedded alumina nanobeams based on novel Timoshenko beam model[J]. Applied Mathematics and Mechanics(English Edition),2014,35(7): 875-886.
    [15] Zhao X J, Rajapakse R K N D. Analytical solutions for a surface-loaded isotropic elastic layer with surface energy effects[J]. International Journal of Engineering Science,2009,47(11/12): 1433-1444.
    [16] Muskhelishvili N I. Some Basic Problem of Mathematical Theory of Elasticity [M]. Groningen: Noordhoff Ltd, 1963.
    [17] Barboni R, Gaudenzi P, Carlini S. A three-dimensional analysis of edge effects in composite laminates with circular holes[J]. Composite Structures,1990,15(2): 115-136.
  • 加载中
计量
  • 文章访问数:  1124
  • HTML全文浏览量:  132
  • PDF下载量:  788
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-04
  • 修回日期:  2015-05-14
  • 刊出日期:  2015-06-15

目录

    /

    返回文章
    返回