[1] |
Salzer H E. Note on osculatory rational interpolation[J].Mathematics of Computation,1962,16(80): 486-491.
|
[2] |
王仁宏. 数值有理逼近[M]. 上海: 上海科学技术出版社, 1980.(WANG Ren-hong.Numerical Rational Approximation [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1980.(in Chinese))
|
[3] |
Wuytack L. On the osculatory rational interpolation problem[J].Mathematics of Computation,1975,29(131): 837-843.
|
[4] |
朱功勤, 黄有群. 插值(切触)分式表的构造[J]. 计算数学, 1983,5(3): 310-317.(ZHU Gong-qin, HUANG You-qun. The construction of the table of interpolating (osculatory) rationals[J].Mathematics Numerica Sinica,1983,5(3): 310-317.(in Chinese))
|
[5] |
苏家铎, 黄有度. 切触有理插值的一个新算法[J]. 高等学校计算数学学报, 1987,9(2): 170-176.(SU Jia-duo, HUANG You-du. A new algorithm of osculatory rational interpolation[J].Numerical Mathematics, A Journal of Chinese Universities,1987,9(2): 170-176.(in Chinese))
|
[6] |
朱晓临.(向量)有理函数插值的研究及其应用[D]. 博士学位论文. 合肥: 中国科学技术大学, 2002.(ZHU Xiao-lin. Research on (vector) rational function interpolation and its application[D]. PhD Thesis. Hefei: University of Science and Technology of China, 2002.(in Chinese))
|
[7] |
王仁宏, 朱功勤. 有理函数逼近及其应用[M]. 北京: 科学出版社, 2004: 117-183.(WANG Ren-hong, ZHU Gong-qin.Rational Function Approximation and Its Application [M]. Beijing: Science Press, 2004: 117-183.(in Chinese))
|
[8] |
荆科, 康宁, 姚云飞. 一种切触有理插值的构造方法[J]. 中国科学技术大学学报, 2013,43(6): 477-479, 485.(JING Ke, KANG Ning, YAO Yun-fei. A new method of constructing osculatory rational interpolation function [J].Journal of University of Science and Technology of China,2013,43(6): 477-479, 485.(in Chinese))
|
[9] |
荆科, 康宁. 二元切触有理插值公式[J]. 计算机工程与应用, 2013,49(12): 33-35.(JING Ke, KANG Ning. Formula of bivariate osculatory rational interpolation[J].Computer Engineering and Applications,2013,49(12): 33-35.(in Chinese))
|
[10] |
Sidi A. A new approach to vector-valued rational interpolation[J].Journal of Approximation Theory,2004,130(2): 177-189.
|
[11] |
Sidi A. Algebraic properties of some new vector-valued rational interpolants[J].Journal of Approximation Theory,2006,141(2): 142-161.
|
[12] |
TANG Shuo, LIANG Yan. Bivariate blending Thiele-Werner’s osculatory rational interpolation[J].Numerical Mathematics, A Journal of Chinese Universities,2007,16(3): 271-288.
|
[13] |
SU Ben-yue, SHENG Min, TANG Shuo, ZHU Gong-qin, HU Wan-bao.SN -type multivariate blending osculatory rational interpolation[J].Journal of University of Science and Technology of China,2009,39(6): 588-593.
|
[14] |
CHEN Zhi-bing. Multivariate vector valued Salzer’s theorem[J].Journal of Mathematical Research and Exposition,2003,23(2): 233-236.
|
[15] |
王仁宏, 梁学章. 多元函数逼近[M]. 北京: 科学出版社, 1988.(WANG Ren-hong, LIANG Xue-zhang.Multivariate General Function Approximation [M]. Beijing: Science Press, 1988.(in Chinese))
|
[16] |
苏化明, 黄有度, 潘杰. 二元多项式函数的一个定理及其应用[J]. 数学杂志, 2013,33(1): 83-89.(SU Hua-ming, HUANG You-du, PAN Jie. A theorem of 2-variable polynomial function and its application[J].Journal of Mathematics,2013,33(1): 83-89.(in Chinese))
|