留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矩形网格上的二元切触有理插值

荆科 康宁

荆科, 康宁. 矩形网格上的二元切触有理插值[J]. 应用数学和力学, 2015, 36(6): 659-667. doi: 10.3879/j.issn.1000-0887.2015.06.010
引用本文: 荆科, 康宁. 矩形网格上的二元切触有理插值[J]. 应用数学和力学, 2015, 36(6): 659-667. doi: 10.3879/j.issn.1000-0887.2015.06.010
JING Ke, KANG Ning. Bivariate Osculatory Rational Interpolation on Rectangular Grids[J]. Applied Mathematics and Mechanics, 2015, 36(6): 659-667. doi: 10.3879/j.issn.1000-0887.2015.06.010
Citation: JING Ke, KANG Ning. Bivariate Osculatory Rational Interpolation on Rectangular Grids[J]. Applied Mathematics and Mechanics, 2015, 36(6): 659-667. doi: 10.3879/j.issn.1000-0887.2015.06.010

矩形网格上的二元切触有理插值

doi: 10.3879/j.issn.1000-0887.2015.06.010
基金项目: 国家重点基础研究发展计划(973计划)(2013CB329600);国家自然科学基金(71371062);安徽省自然科学基金(1408085MD70);安徽省高校省级自然科学研究项目(2014KJ011)
详细信息
    作者简介:

    荆科(1983—),男,安徽颍上人,博士生(E-mail: jingxuefei296@sina.com);唐宁(1986—),女,安徽利辛人,讲师,博士生(通讯作者. E-mail: kangningning2006@126.com).

  • 中图分类号: O241.3

Bivariate Osculatory Rational Interpolation on Rectangular Grids

Funds: The National Basic Research Program of China (973 Program)(2013CB329600);The National Natural Science Foundation of China(71371062)
  • 摘要: 二元切触有理插值是有理插值的一个重要内容,而降低其函数的次数和解决其函数的存在性是有理插值的一个重要问题.二元切触有理插值算法的可行性大都是有条件的,且计算复杂度较大,有理函数的次数较高.利用二元Hermite(埃米特)插值基函数的方法和二元多项式插值误差性质,构造出了一种二元切触有理插值算法并将其推广到向量值情形.较之其它算法,有理插值函数的次数和计算量较低.最后通过数值实例说明该算法的可行性是无条件的,且计算量低.
  • [1] Salzer H E. Note on osculatory rational interpolation[J].Mathematics of Computation,1962,16(80): 486-491.
    [2] 王仁宏. 数值有理逼近[M]. 上海: 上海科学技术出版社, 1980.(WANG Ren-hong.Numerical Rational Approximation [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1980.(in Chinese))
    [3] Wuytack L. On the osculatory rational interpolation problem[J].Mathematics of Computation,1975,29(131): 837-843.
    [4] 朱功勤, 黄有群. 插值(切触)分式表的构造[J]. 计算数学, 1983,5(3): 310-317.(ZHU Gong-qin, HUANG You-qun. The construction of the table of interpolating (osculatory) rationals[J].Mathematics Numerica Sinica,1983,5(3): 310-317.(in Chinese))
    [5] 苏家铎, 黄有度. 切触有理插值的一个新算法[J]. 高等学校计算数学学报, 1987,9(2): 170-176.(SU Jia-duo, HUANG You-du. A new algorithm of osculatory rational interpolation[J].Numerical Mathematics, A Journal of Chinese Universities,1987,9(2): 170-176.(in Chinese))
    [6] 朱晓临.(向量)有理函数插值的研究及其应用[D]. 博士学位论文. 合肥: 中国科学技术大学, 2002.(ZHU Xiao-lin. Research on (vector) rational function interpolation and its application[D]. PhD Thesis. Hefei: University of Science and Technology of China, 2002.(in Chinese))
    [7] 王仁宏, 朱功勤. 有理函数逼近及其应用[M]. 北京: 科学出版社, 2004: 117-183.(WANG Ren-hong, ZHU Gong-qin.Rational Function Approximation and Its Application [M]. Beijing: Science Press, 2004: 117-183.(in Chinese))
    [8] 荆科, 康宁, 姚云飞. 一种切触有理插值的构造方法[J]. 中国科学技术大学学报, 2013,43(6): 477-479, 485.(JING Ke, KANG Ning, YAO Yun-fei. A new method of constructing osculatory rational interpolation function [J].Journal of University of Science and Technology of China,2013,43(6): 477-479, 485.(in Chinese))
    [9] 荆科, 康宁. 二元切触有理插值公式[J]. 计算机工程与应用, 2013,49(12): 33-35.(JING Ke, KANG Ning. Formula of bivariate osculatory rational interpolation[J].Computer Engineering and Applications,2013,49(12): 33-35.(in Chinese))
    [10] Sidi A. A new approach to vector-valued rational interpolation[J].Journal of Approximation Theory,2004,130(2): 177-189.
    [11] Sidi A. Algebraic properties of some new vector-valued rational interpolants[J].Journal of Approximation Theory,2006,141(2): 142-161.
    [12] TANG Shuo, LIANG Yan. Bivariate blending Thiele-Werner’s osculatory rational interpolation[J].Numerical Mathematics, A Journal of Chinese Universities,2007,16(3): 271-288.
    [13] SU Ben-yue, SHENG Min, TANG Shuo, ZHU Gong-qin, HU Wan-bao.SN -type multivariate blending osculatory rational interpolation[J].Journal of University of Science and Technology of China,2009,39(6): 588-593.
    [14] CHEN Zhi-bing. Multivariate vector valued Salzer’s theorem[J].Journal of Mathematical Research and Exposition,2003,23(2): 233-236.
    [15] 王仁宏, 梁学章. 多元函数逼近[M]. 北京: 科学出版社, 1988.(WANG Ren-hong, LIANG Xue-zhang.Multivariate General Function Approximation [M]. Beijing: Science Press, 1988.(in Chinese))
    [16] 苏化明, 黄有度, 潘杰. 二元多项式函数的一个定理及其应用[J]. 数学杂志, 2013,33(1): 83-89.(SU Hua-ming, HUANG You-du, PAN Jie. A theorem of 2-variable polynomial function and its application[J].Journal of Mathematics,2013,33(1): 83-89.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1279
  • HTML全文浏览量:  133
  • PDF下载量:  743
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-09
  • 修回日期:  2014-10-13
  • 刊出日期:  2015-06-15

目录

    /

    返回文章
    返回