留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多目标优化问题Proximal真有效解的最优性条件

李小燕 高英

李小燕, 高英. 多目标优化问题Proximal真有效解的最优性条件[J]. 应用数学和力学, 2015, 36(6): 668-676. doi: 10.3879/j.issn.1000-0887.2015.06.011
引用本文: 李小燕, 高英. 多目标优化问题Proximal真有效解的最优性条件[J]. 应用数学和力学, 2015, 36(6): 668-676. doi: 10.3879/j.issn.1000-0887.2015.06.011
LI Xiao-yan, GAO Ying. Optimality Conditions for Proximal Proper Efficiency in Multiobjective Optimization Problems[J]. Applied Mathematics and Mechanics, 2015, 36(6): 668-676. doi: 10.3879/j.issn.1000-0887.2015.06.011
Citation: LI Xiao-yan, GAO Ying. Optimality Conditions for Proximal Proper Efficiency in Multiobjective Optimization Problems[J]. Applied Mathematics and Mechanics, 2015, 36(6): 668-676. doi: 10.3879/j.issn.1000-0887.2015.06.011

多目标优化问题Proximal真有效解的最优性条件

doi: 10.3879/j.issn.1000-0887.2015.06.011
基金项目: 国家自然科学基金(11201511;11271391;11431004)
详细信息
    作者简介:

    李小燕(1990—),女,重庆人,硕士生(E-mail: xyanzi1201@163.com);高英(1982—),女,内蒙古人,副教授(通讯作者. E-mail: gaoyingimu@163.com).

  • 中图分类号: O221.6

Optimality Conditions for Proximal Proper Efficiency in Multiobjective Optimization Problems

Funds: The National Natural Science Foundation of China(11201511;11271391;11431004)
  • 摘要: 在广义凸性假设下,给出了集合proximal真有效点的线性标量化,并在此基础上证明了它与Benson真有效点和Borwein真有效点的等价性.将这些结果应用到多目标优化问题上,得到proximal真有效解的最优性条件.最后,利用proximal次微分,得到了proximal真有效解的模糊型最优性条件.
  • [1] Koopmans T C. Analysis of production as an efficient combination of activities[C]//Koopmans T C, Alchian A, Dantizg G B, Georgescu-Roegen N, Samuelson P A, Tucker A W eds.Activity Analysis of Production and Allocation Proceedings of a Conference.New York: John Wiley and Sons, 1951,13: 33-97.
    [2] Kuhn H W, Tucker A W. Nonlinear programming[C]// Proceeding of the Second Berkeley Symposium on Mathematical Statistics and Probability . Berkeley, CA: University of California Press, 1951: 481-492.
    [3] Geoffrion A M. Proper efficiency and the theory of vector maximization[J].Journal of Mathematical Analysis and Applications,1968,22(3): 618-630.
    [4] Borwein J M. Proper efficient points for maximizations with respect to cones[J].SIAM Journal on Control and Optimization,1997,15(1): 57-63.
    [5] Benson H P. An improved definition of proper efficiency for vector minimization with respect to cones[J].Journal of Mathematical Analysis and Applications,1979,71(1): 232-241.
    [6] Borwein J M, Zhuang D M. Super efficiency in convex vector optimization[J].Zeitschrift für Operations Research,1991,35(3): 175-184.
    [7] Borwein J M, Zhuang D M. Super efficiency in vector optimization[J].Transactions of the American Mathematical Society,1993,338(1): 105-122.
    [8] Lalitha C S, Arora R. proximal proper efficiency for minimisation with respect to normal cones[J].Bulletin of the Australian Mathematical Society,2005,71(2): 215-224.
    [9] Chen G Y, Rong W D. Characterizations of the Benson proper efficiency for nonconvex vector optimization[J].Journal of Optimization Theory and Applications,1998,98(2): 365-384.
    [10] YANG Xin-min. The equivalency of Borwein proper efficient and Benson proper efficient solutions[J].Mathematica Applicata,1994,7: 246-247.
    [11] 彭再云, 李科科, 张石生. 向量 D-η-E -半预不变凸映射与向量优化[J]. 应用数学和力学, 2014,35(9): 1020-1032.(PENG Zai-yun, LI Ke-ke, ZHANG Shi-sheng.D-η-E -semipreinvex vector mappings and vector optimization[J].Applied Mathematics and Mechanics,2014,35(9): 1020-1032.(in Chinese))
    [12] Yang X M, Li D, Wang S Y. Near-subconvexlikeness in vector optimization with set-valued functions[J].Journal of Optimization Theory and Applications,2001,110(2): 413-427.
    [13] Li Z F, Wang S Y. Lagrange multipliers and saddle points in multiobjective programming[J].Journal of Optimization Theory and Applications,1994,83(1): 63-81.
    [14] 赵勇, 彭再云, 张石生. 向量优化问题有效点集的稳定性[J]. 应用数学和力学, 2013,34(6): 643-650.(ZHAO Yong, PENG Zai-yun, ZHANG Shi-sheng. Stability of the sets of efficient points of vector-valued optimization problems[J].Applied Mathematics and Mechanics,2013,34(6): 643-650.(in Chinese))
    [15] Yang X M, Yang X Q, Chen G Y. Theorem of the alternative and optimization with set-valued maps[J].Journal of Optimization Theory and Application,2000,107(3): 627-640.
    [16] Rockafellar R T.Convex Analysis [M]. Princeton: Princeton University Press, 1970.
    [17] Clarke F H, Ledyaev Y S, Stern R J, Wolenski P R.Nonsmooth Analysis and Control Theory [M]. New York: Springer Verlag, 1998.
    [18] Sawaragi Y, Nakayama H, Tanino Tetsuzo.Theory of Multiobjective Optimization [M]. New York: Academic Press, 1985.
  • 加载中
计量
  • 文章访问数:  1383
  • HTML全文浏览量:  142
  • PDF下载量:  908
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-08
  • 修回日期:  2015-05-05
  • 刊出日期:  2015-06-15

目录

    /

    返回文章
    返回