留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cosserat生长弹性杆动力学的Gauss最小拘束原理

薛纭 曲佳乐 陈立群

薛纭, 曲佳乐, 陈立群. Cosserat生长弹性杆动力学的Gauss最小拘束原理[J]. 应用数学和力学, 2015, 36(7): 700-709. doi: 10.3879/j.issn.1000-0887.2015.07.003
引用本文: 薛纭, 曲佳乐, 陈立群. Cosserat生长弹性杆动力学的Gauss最小拘束原理[J]. 应用数学和力学, 2015, 36(7): 700-709. doi: 10.3879/j.issn.1000-0887.2015.07.003
XUE Yun, QU Jia-le, CHEN Li-qun. Gauss Principle of Least Constraint for Cosserat Growing Elastic Rod Dynamics[J]. Applied Mathematics and Mechanics, 2015, 36(7): 700-709. doi: 10.3879/j.issn.1000-0887.2015.07.003
Citation: XUE Yun, QU Jia-le, CHEN Li-qun. Gauss Principle of Least Constraint for Cosserat Growing Elastic Rod Dynamics[J]. Applied Mathematics and Mechanics, 2015, 36(7): 700-709. doi: 10.3879/j.issn.1000-0887.2015.07.003

Cosserat生长弹性杆动力学的Gauss最小拘束原理

doi: 10.3879/j.issn.1000-0887.2015.07.003
基金项目: 国家自然科学基金(11372195; 10972143)
详细信息
    作者简介:

    薛纭(1956—),男,上海人,教授,博士,硕士生导师(通讯作者. E-mail: xy@sit.edu.cn).

  • 中图分类号: O316

Gauss Principle of Least Constraint for Cosserat Growing Elastic Rod Dynamics

Funds: The National Natural Science Foundation of China(11372195; 10972143)
  • 摘要: 以自然界中具有生长、变形和运动特征的细长体为背景,用经典力学中的Gauss最小拘束原理研究生长弹性杆的动力学建模问题.在为生长弹性杆动力学建模提供新方法的同时,扩大了Gauss原理的应用范围.以Cosserat弹性杆为对象,分析弹性杆生长和变形的几何规则,表明生长应变和弹性应变是非线性耦合的;本构方程给出了截面的内力与弹性变形的线性关系;利用逆并矢,将经典力学中的Gauss原理和Gauss最小拘束原理用于生长弹性杆动力学,得到等价的两种表现形式,反映了时间和弧坐标在表述上的对称性,由此导出了封闭的动力学微分方程.给出了两种形式的最小拘束函数,表明生长弹性杆的实际运动使拘束函数取驻值,且为最小值.最后讨论了生长弹性杆的约束与条件极值等问题.
  • [1] 刘延柱. 弹性细杆的非线性力学——DNA 力学模型的理论基础[M]. 北京: 清华大学出版社, Springer, 2006: 14, 32.(LIU Yan-zhu. Nonlinear Mechanics of Thin Elastic Rod— Theoretical Basis of Mechanical Model of DNA[M]. Beijing: Tsinghua University Press, Springer, 2006: 14, 32.(in Chinese))
    [2] 刘延柱. 弹性杆基因模型的力学问题[J]. 力学与实践, 2003,25(1): 1-5.(LIU Yan-zhu. Mechanical problems on elastic rod model of DNA[J]. Mechanics in Engineering, 2003,25(1): 1-5.(in Chinese))
    [3] 马拉森斯基 乔治 M. 分子生物学精要[M]. 第4版. 魏群 译. 北京: 化学工业出版社, 2005: 59.(Malacinski George M. Essentials of Molecular Biology[M]. 4th ed. WEI Qun transl. Bejing: Chemical Industry Press, 2005: 59.(Chinese version))
    [4] CAO Deng-qing, Tucker R W. Nonlinear dynamics of elastic rods using the Cosserat theory: modelling and simulation[J]. International Journal of Solids and Structure,2008,45(2): 460-470.
    [5] 薛纭, 刘延柱, 陈立群. 超细长弹性杆的分析力学问题[J]. 力学学报, 2005,37(4): 485-493.(XUE Yun, LIU Yan-zhu, CHEN Li-qun. On analytical mechanics for a super-thin elastic rod[J]. Chinese Journal of Theoretical and Applied Mechanics,2005,37(4): 485-493.(in Chinese))
    [6] 薛纭, 刘延柱, 陈立群. Kirchhoff弹性杆动力学建模的分析力学方法[J]. 物理学报, 2006,55(8): 3845-3851.(XUE Yun, LIU Yan-zhu,CHEN Li-qun. Methods of analytical mechanics for dynamics of the Kirchhoff elastic rod[J]. Acta Physica Sinica,2006,55(8): 3845-3851.(in Chinese))
    [7] 薛纭, 翁德玮. 超细长弹性杆动力学的Gauss原理[J]. 物理学报, 2009,58(1): 34.(XUE Yun, WENG De-wei. Gauss principle for a super-thin elastic rod dynamics[J]. Acta Physica Sinica,2009,58(1): 34.(in Chinese))
    [8] 薛纭, 翁德玮, 陈立群. 精确Cosserat弹性杆动力学的分析力学方法[J]. 物理学报, 2013,62(4): 044601.(XUE Yun, WENG De-wei, CHEN Li-qun. Methods of analytical mechanics for exact Cosserat elastic rod dynamic[J]. Acta Physica Sinica,2013,62(4): 044601.(in Chinese))
    [9] 梅凤翔. 分析力学(下卷)[M]. 北京: 北京理工大学出版社, 2013: 621.(MEI Feng-xiang. Analytical Mechanics[M]. Bejing: Bejing Institute of Technology Press, 2013: 621.(in Chinese))
    [10] 陈滨. 分析动力学[M]. 北京: 北京大学出版社, 2012: 288.(CHEN Bin. Analytical Dynamics[M]. Beijing: Peking University Press, 2012: 288.(in Chinese))
    [11] 刘延柱. 高等动力学[M]. 北京: 高等教育出版社, 2001: 50.(LIU Yan-zhu. Advanced Dynamics[M]. Beijing: Higher Educational Press, 2001: 50.(in Chinese))
    [12] Kalaba R E, Udwadia F E. Equations of motion for nonholonomic, constrained dynamical systems via Gauss’s principle[J]. Journal of Applied Mechanics,1993,60(3): 662-668.
    [13] Kalaba R, Natsuyama H, Udwadia F. An extension of Gauss’s principle of least constraint[J]. International Journal of General Systems, 2004,33(1): 63-69.
    [14] 董龙雷, 闫桂荣, 杜彦亭, 余建军, 牛宝良, 李荣林. 高斯最小拘束原理在一类刚柔耦合系统分析中的应用[J]. 兵工学报, 2001,22(3): 347-351.(DONG Long-lei, YAN Gui-rong, DU Yan-ting, YU Jian-jun, NIU Bao-liang, LI Rong-lin. Application of the Gauss minimum constraint theory in a rigid-flexible coupled system[J]. Acta Armamentarii,2001,〖STHZ〗 22(3): 347-351.(in Chinese))
    [15] 刘延柱, 薛纭. 基于高斯原理的Cosserat弹性杆动力学模型[J]. 物理学报, 2014,64(4): 044601.(LIU Yan-zhu, XUE Yun. Dynamical model of Cosserat elastic rod based on Gauss principle[J] . Acta Physica Sinica, 2014,64(4): 044601.(in Chinese))
    [16] Moulton D E, Lessinnes T, Goriely A. Morphoelastic rods—part Ⅰ: a single growing elastic rod[J]. Journal of the Mechanics and Physics of Solids, 2013,61(2): 398-427.
    [17] Cao D Q, Song M T, Tucker R W, Zhu W D, Liu D S, Huang W H. Dynamic equations of thermoelastic Cosserat rods[J]. Communications in Nonlinear Science and Numerical Simulation, 2013,18(7): 1880-1887.
    [18] Wolgemuth C W, Goldstein R E, Powers T R. Dynamic supercoiling bifurcations of growing elastic filaments[J]. Physica D: Nonlinear Phenomena, 2004,190(3/4): 266-289.
    [19] Goriely A, Neukirch S. Mechanics of climbing and attachment in twining plants[J]. Phys Rev Lett,2006,97(18): 184302.
    [20] Lockhart J A. An analysis of irreversible plant cell elongation[J]. Journal of Theoretical Biology,1965,8(2): 264-275.
    [21] Cosgrove D J. Cell wall yield properties of growing tissue: evaluation by in vivo stress relaxation[J]. Plant Physiol,1985,78(2): 347-356.
    [22] Goodwin B C, Briére C. A mathematical model of cytoskeletal dynamics and morphogenesis in acetabularia[C]//Menzel D ed. The Cytoskeleton of the Algae. Boca Raton: CRC Press, 1992: 219-233.
    [23] Stein A A. The deformation of a rod of growing biological material under longitudinal compression[J]. Journal of Applied Mathematics and Mechanics,1995,59(1):139-146.
  • 加载中
计量
  • 文章访问数:  1218
  • HTML全文浏览量:  113
  • PDF下载量:  778
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-16
  • 修回日期:  2015-06-09
  • 刊出日期:  2015-07-15

目录

    /

    返回文章
    返回