留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双势理论用于处理非关联材料本构

周洋靖 冯志强 宁坡

周洋靖, 冯志强, 宁坡. 双势理论用于处理非关联材料本构[J]. 应用数学和力学, 2015, 36(8): 787-804. doi: 10.3879/j.issn.1000-0887.2015.08.001
引用本文: 周洋靖, 冯志强, 宁坡. 双势理论用于处理非关联材料本构[J]. 应用数学和力学, 2015, 36(8): 787-804. doi: 10.3879/j.issn.1000-0887.2015.08.001
ZHOU Yang-jing, FENG Zhi-qiang, NING Po. The Bi-Potential Theory Applied to Non-Associated Constitutive Laws[J]. Applied Mathematics and Mechanics, 2015, 36(8): 787-804. doi: 10.3879/j.issn.1000-0887.2015.08.001
Citation: ZHOU Yang-jing, FENG Zhi-qiang, NING Po. The Bi-Potential Theory Applied to Non-Associated Constitutive Laws[J]. Applied Mathematics and Mechanics, 2015, 36(8): 787-804. doi: 10.3879/j.issn.1000-0887.2015.08.001

双势理论用于处理非关联材料本构

doi: 10.3879/j.issn.1000-0887.2015.08.001
基金项目: 国家自然科学基金(11372260)
详细信息
    作者简介:

    周洋靖(1988—),男,四川人,博士生(通讯作者. E-mail: yjzhou1988@qq.com);冯志强(1963—),男,重庆人,教授,博士生导师(E-mail: feng@ufrst.univ-evry.fr);宁坡(1990—),男,湖南人,博士生(E-mail: 351528123@qq.com).

  • 中图分类号: O39;O341

The Bi-Potential Theory Applied to Non-Associated Constitutive Laws

Funds: The National Natural Science Foundation of China(11372260)
  • 摘要: 基于传统塑性力学框架下的显式积分算法和基于Simo-Taylor提出的回退映射隐式积分算法是固体力学中两大经典本构积分算法.以经典的非关联材料模型Drucker-Prager(D-P)模型和Armstrong-Frederick(A-F)模型为例分别回顾了显式积分算法和隐式积分算法.以双势理论为基础,将双势的概念运用到材料的自由能中,将材料分为显式标准材料和隐式标准材料.两种传统积分算法都能有效地处理显式标准材料的本构关系,但在处理隐式标准材料时却存在一定的问题.双势积分算法是建立在双势理论下的本构积分算法,此算法不仅能够处理显式标准材料,对于处理隐式标准材料,也存在一定的优势.通过变分原理推导了双势积分算法解的存在性,运用双势积分算法处理Drucker-Prager模型和Armstrong-Frederick模型,并与经典传统积分算法得到的结果进行对比,验证了双势本构积分算法的稳定性和准确性.
  • [1] Smith I M, Griffiths D V. 有限元方法编程[M]. 第3版. 王崧, 周坚鑫, 王来, 裴波, 刘丽娟, 唐国兵, 唐伯鉴, 译. 北京: 电子工业出版社, 2003.(Smith I M, Griffiths D V. Programming the Finite Element Method[M]. 3rd ed. WANG Song, ZHOU Jian-xin, WANG Lai, PEI Bo, LIU Li-juan, TANG Guo-bing, TANG Bo-jian, transl. Beijing: Publishing House of Electronics Industry, 2003.(in Chinese))
    [2] 郑颖人, 孔亮, 刘元雪. 塑性本构理论与工程材料塑性本构关系[J]. 应用数学和力学, 2014,35(7): 713-722.(ZHENG Ying-ren, KONG Liang, LIU Yuan-xue. Plastic constitutive relation and plastic constitutive theory for engineering materials[J]. Applied Mathematics and Mechanics,2014,35(7): 713-722.(in Chinese))
    [3] 郑颖人, 沈珠江, 龚晓南. 岩土塑性力学原理[M]. 第1版. 北京:中国建筑工业出版社, 2002.(ZHENG Ying-ren, SHEN Zhu-jiang, GONG Xiao-nan. The Principles of Geotechnical Plastic Mechanics[M]. 1st ed. Beijing: China Architecture and Building Press, 2002.(in Chinese))
    [4] 蒋明镜, 沈珠江. 理想弹塑性材料有限元计算算法比较研究[J]. 水利水运科学研究, 1998(1): 28-37.(JIANG Ming-jing, SHEN Zhu-jiang. Study and comparison on the FEM computation methods used for the ideal elasto-plastic material[J]. Journal of Nanjing Hydraulic Research Institute,1998(1): 28-37.(in Chinese))
    [5] Simo J C, Taylor R L. Consistent tangent operators for rate-independent elastoplasticity[J]. Computer Methods in Applied Mechanics and Engineering,1985,48(1): 101-118.
    [6] Fenchel W. On conjugate convex functions[J]. Canadian Journal of Mathematics,1949,1: 73-77.
    [7] de Saxcé G, Feng Z Q. New inequality and functional for contact with friction: the implicit standard material approach[J]. Mechanics of Structures and Machines,1991,19(3): 301-325.
    [8] de Saxcé G. Une généralisation de l’inégalité de Fenchel et ses applications aux lois constitutives[J]. Comptes Rendus de L’Académie des Sciences,1992,314(2): 125-129.
    [9] de Saxcé G. The bipotential method, a new variational and numerical treatment of the dissipative laws of materials[C]//〖STBX〗10th International Conference on Mathematical and Computer Modelling and Scientific Computing. Boston, USA, 1995.
    [10] Vallée C, Lerintiu D, Fortuné D, Man M, de Saxcé G. A bipotential expressing simultaneous ordered spectral decomposition between stress and strain rate tensor[C]//International Conference on New Trends in Continuum Mechanics. Constanta, Romania, 2003.
    [11] FENG Zhi-qiang. 2D or 3D frictional contact algorithms and applications in a large deformation context[J]. Communications in Numerical Methods in Engineering,1995,11(5): 409-416.
    [12] de Saxcé G, Feng Z Q. The bipotential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms[J]. Mathematical and Computer Modelling,1998,28(4/8): 225-245.
    [13] Parisch H. A consistent tangent stiffness matrix for three-dimensional non-linear contact analysis[J]. International Journal for Numerical Methods in Engineering,1989,28(8): 1803-1812.
    [14] Feng Z Q, Hjiaj M, de Saxcé G, Mróz Z. Influence of frictional anisotropy on contacting surfaces during loading/unloading cycles[J]. International Journal of Non-Linear Mechanics,2006,41(8): 936-948.
    [15] Feng Z Q, Joli P, Cros J M, Magnain B. The bi-potential method applied to the modeling of dynamic problems with friction[J]. Computational Mechanics,2005,36(5): 375-383.
    [16] Feng Z Q, Peyraut F, He Q C. Finite deformations of Ogden’s materials under impact loading[J]. International Journal of Non-Linear Mechanics,2006,41(4): 575-585.
    [17] FENG Zhi-qiang, Renaud C, Cros J M, ZHANG Hong-wu, GUAN Zhen-qun. A finite element finite-strain formulation for modeling colliding blocks of Gent materials[J]. International Journal of Solids and Structures,2010,47(17): 2215-2222.
    [18] Joli P, Feng Z Q. Uzawa and Newton algorithms to solve frictional contact problems within the bi-potential framework[J]. International Journal for Numerical Methods in Engineering,2008,73(3): 317-330.
    [19] Bodovillé G, de Saxcé G. Plasticity with non-linear kinematic hardening: modelling and shakedown analysis by the bipotential approach[J]. European Journal of Mechanics—A/Solids,2001,20(1): 99-112.
    [20] Bouby C, de Saxcé G, Tritsch J B. Shakedown analysis: comparison between models with the linear unlimited, linear limited and non-linear kinematic hardening[J]. Mechanics Research Communications,2009,36(5): 556-562.
    [21] Chaaba A. Plastic collapse in presence of non-linear kinematic hardening by the bipotential and the sequential limit analysis approaches[J]. Mechanics Research Communications,2010,37(5): 484-488.
    [22] Mitchell G P, Owen D R J. Numerical solutions for elastic-plastic problems[J]. Engineering Computations,1988,5(4): 274-284.
    [23] Bousshine L, Chaaba A, de Saxcé G. Softening in stress-strain curve for Drucker-Prager non-associated plasticity[J]. International Journal of Plasticity,2001,17(1): 21-46.
    [24] Hjiaj M, Fortin J, de Saxcé G. A complete stress update algorithm for the non-associated Drucker-Prager model including treatment of the apex[J]. International Journal of Engineering Science,2003,41(10): 1109-1143.
    [25] Berga A. Contribution to modeling of non associated law of soils with the bipotential method and its application in foundation area[C]//International Symposium on Characterization and Modeling of Materials and Structures, CMMS〖STBX〗08. Tizi-Ouzou, Algeria, 2008.
    [26] Berga A. Mathematical and numerical modeling of the non-associated plasticity of soils—part 1: the boundary value problem[J]. International Journal of Non-Linear Mechanics,2012,47(1): 26-35.
    [27] Berga A. Mathematical and numerical modeling of the non-associated plasticity of soils—part 2: finite element analysis[J]. International Journal of Non-Linear Mechanics,2012,47(1): 36-45.
    [28] Zhou Y J, Feng Z Q, Xu W Y. Non-associated constitutive law of soils and its simulation based on the bi-potential theory[J]. International Journal of Structural Analysis & Design,2014,1(4): 1-6.
    [29] Magnier V, Charkaluk E, de Saxcé G. Bipotential versus return mapping algorithms: implementation of non associated flow rules[J]. International Journal of Solids and Structures,2014,51(15/16): 2857-2864.
    [30] Drucker D C, Prager W. Soil mechanics and plasticity analysis or limit design[J]. Quarterly of Applied Mathematics,1952,10(2): 157-165.
    [31] 杨强, 杨晓君, 陈新. 基于D-P准则的理想弹塑性本构关系积分研究[J]. 工程力学, 2005,22(4): 15-19, 47.(YANG Qiang, YANG Xiao-jun, CHEN Xin. On integration algorithms for perfect plasticity based on Drucker-Prager criterion[J]. Engineering Mechanics,2005,22(4): 15-19, 47.(in Chinese))
    [32] Ohon N, Wang J D. Kinematic hardening rules with critical state of dynamic recovery, part I: formulation and basic features for ratcheting behavior[J]. International Journal of Plasticity,1993,9(3): 375-390.
  • 加载中
计量
  • 文章访问数:  1446
  • HTML全文浏览量:  112
  • PDF下载量:  849
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-28
  • 修回日期:  2015-07-06
  • 刊出日期:  2015-08-15

目录

    /

    返回文章
    返回