留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹性波在星形节点周期结构蜂窝材料中的传播特性研究

贠昊 邓子辰 朱志韦

贠昊, 邓子辰, 朱志韦. 弹性波在星形节点周期结构蜂窝材料中的传播特性研究[J]. 应用数学和力学, 2015, 36(8): 814-820. doi: 10.3879/j.issn.1000-0887.2015.08.003
引用本文: 贠昊, 邓子辰, 朱志韦. 弹性波在星形节点周期结构蜂窝材料中的传播特性研究[J]. 应用数学和力学, 2015, 36(8): 814-820. doi: 10.3879/j.issn.1000-0887.2015.08.003
YUN Hao, DENG Zi-chen, ZHU Zhi-wei. Bandgap Properties of Periodic 4-Point Star-Shaped Honeycomb Materials With Negative Poisson’s Ratios[J]. Applied Mathematics and Mechanics, 2015, 36(8): 814-820. doi: 10.3879/j.issn.1000-0887.2015.08.003
Citation: YUN Hao, DENG Zi-chen, ZHU Zhi-wei. Bandgap Properties of Periodic 4-Point Star-Shaped Honeycomb Materials With Negative Poisson’s Ratios[J]. Applied Mathematics and Mechanics, 2015, 36(8): 814-820. doi: 10.3879/j.issn.1000-0887.2015.08.003

弹性波在星形节点周期结构蜂窝材料中的传播特性研究

doi: 10.3879/j.issn.1000-0887.2015.08.003
基金项目: 国家自然科学基金(11172239);高校博士点基金(20126102110023);大连理工大学工业装备结构分析国家重点实验室开放基金资助(GZ0802)
详细信息
    作者简介:

    贠昊(1989—),男,山西晋中人,硕士生(E-mail: 2013261017@mail.nwpu.edu.cn);邓子辰(1964—), 男,辽宁人,教授, 博士生导师(通讯作者. E-mail: dweifan@nwpu.edu.cn);朱志韦(1986—),男,河北衡水人,博士生(E-mail: zhuzhiwei@mail.nwpu.edu.cn).

  • 中图分类号: O326;O328

Bandgap Properties of Periodic 4-Point Star-Shaped Honeycomb Materials With Negative Poisson’s Ratios

Funds: The National Natural Science Foundation of China(11172239)
  • 摘要: 星形节点周期结构蜂窝材料是具有负Poisson(泊松)比效应的一种结构性材料.采用有限元方法对其离散并结合Bloch定理来分析弹性波在其内部传播的带隙问题.结果表明:星形节点周期结构蜂窝材料存在宽大的频率禁带且禁带的位置和大小相对稳定;同时星形节点本身的旋转共振模态是材料最低阶禁带形成的主要原因.星形节点周期结构蜂窝材料的以上带隙特性使其在工程中减震降噪方面具有潜在的应用价值.
  • [1] Lakes R. Deformation mechanisms in negative Poisson’s ratio materials: structural aspects[J].Journal of Materials Science,1991,26(9): 2287-2292.
    [2] Lakes R. Foam structures with a negative Poisson’s ratio[J].Science, 1987,235(4792): 1038-1040.
    [3] Prall D, Lakes R. Properties of a chiral honeycomb with a Poisson’s ratio of-1[J].International Journal of Mechanical Sciences,1997,39(3): 305-314.
    [4] Lakes R, Elms K. Indentability of conventional and negative Poisson’s ratio foams[J].Journal of Composite Materials,1993,27(12): 1193-1202.
    [5] Evens K E. Tailoring the negative Poisson’s ratio[J].Chemistry and Industry,1990,20: 654-657.
    [6] Lakes R. Advances in negative Poisson’s ratio materials[J].Advanced Materials,1993,5(4): 293-296.
    [7] Theocaris P S, Stavroulakis G E, Panagiotopoulos P D. Negative Poisson’s ratios in composites with star-shaped inclusions: a numerical homogenization approach[J].Archive of Applied Mechanics,1997,67(4): 274-286.
    [8] Grima J N, Gatt R, Alderson A, Evans K E. On the potential of connected stars as auxetic systems[J].Molecular Simulation,2005,31(3): 925-935.
    [9] Ruzzene M, Scarpa F, Soranna F. Wave beaming effects in two-dimensional cellular structures[J].Smart Materials and Structures,2003,12(3): 363-372.
    [10] Gonella S, Ruzzene M. Analysis of in-plane wave propagation in hexagonal and re-entrant lattices[J].Journal of Sound and Vibration,2008,312(1/2): 125-139.
    [11] Spadoni A, Ruzzene M, Gonella S, Scarpa F. Phononic properties of hexagonal chiral lattices[J].Wave Motion,2009,46(7): 435-450.
    [12] Liu X N, Hu G K, Sun C T, Huang G L. Wave propagation characterization and design of two-dimensional elastic chiral metacomposite[J].Journal of Sound and Vibration,2011,330 (11): 2536-2553.
  • 加载中
计量
  • 文章访问数:  1400
  • HTML全文浏览量:  92
  • PDF下载量:  1048
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-13
  • 修回日期:  2015-06-17
  • 刊出日期:  2015-08-15

目录

    /

    返回文章
    返回