留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Lie群的刚体动力学建模及数值计算方法研究

白龙 董志峰 戈新生

白龙, 董志峰, 戈新生. 基于Lie群的刚体动力学建模及数值计算方法研究[J]. 应用数学和力学, 2015, 36(8): 833-843. doi: 10.3879/j.issn.1000-0887.2015.08.005
引用本文: 白龙, 董志峰, 戈新生. 基于Lie群的刚体动力学建模及数值计算方法研究[J]. 应用数学和力学, 2015, 36(8): 833-843. doi: 10.3879/j.issn.1000-0887.2015.08.005
BAI Long, DONG Zhi-feng, GE Xin-sheng. Lie Group and Lie Algebra Modeling for Numerical Calculation of Rigid Body Dynamics[J]. Applied Mathematics and Mechanics, 2015, 36(8): 833-843. doi: 10.3879/j.issn.1000-0887.2015.08.005
Citation: BAI Long, DONG Zhi-feng, GE Xin-sheng. Lie Group and Lie Algebra Modeling for Numerical Calculation of Rigid Body Dynamics[J]. Applied Mathematics and Mechanics, 2015, 36(8): 833-843. doi: 10.3879/j.issn.1000-0887.2015.08.005

基于Lie群的刚体动力学建模及数值计算方法研究

doi: 10.3879/j.issn.1000-0887.2015.08.005
基金项目: 国家自然科学基金(11472058)
详细信息
    作者简介:

    白龙(1988—),男,山东人,博士生(通讯作者. E-mail: bailong0316jn@126.com).

  • 中图分类号: TH123;O302

Lie Group and Lie Algebra Modeling for Numerical Calculation of Rigid Body Dynamics

Funds: The National Natural Science Foundation of China(11472058)
  • 摘要: 基于Lie群和Lie代数之间的指数映射等价关系,推导了基于Lie群的自由刚体连续动力学方程.结合离散变分原理,推导了其Lie群离散变分积分子.通过证明可知连续和离散动力学系统都具有动量守恒性.对连续动力学方程进行同维化处理,使其变为常规非线性方程组的形式,利用Runge-Kutta法进行求解;基于Runge-Kutta基本理论,推导了直接用于Lie群的Runge-Kutta法,从而使Runge-Kutta法可用于求解变维非线性方程组;通过Lie代数变换,利用Kelly变换和Newton迭代对Lie群离散变分积分子进行求解.仿真对比结果表明,3种算法下的计算结果高度吻合,且能高精度地保持系统的结构守恒和动量守恒性.
  • [1] Chaturvedi N A, Lee T, Leok M, McClamroch N H. Nonlinear dynamics of the 3D pendulum[J].Nonlinear Science,2011,21(1): 3-32.
    [2] 边宇枢, 高志慧. 6自由度水下机器人动力学分析与运动控制[J]. 机械工程学报, 2007,43(7): 87-92.(BIAN Yu-shu, GAO Zhi-hui. Dynamic analysis and motion control of 6-dof underwater robot [J].Chinese Journal of Mechanical Engineering,2007,43(7):87-92.(in Chinese))
    [3] 徐正武, 唐国元. 四元数在水下航行体运动建模中的应用[J]. 中国舰船研究, 2014,9(2): 12-29.(XU Zheng-wu, TANG Guo-yuan. Applying the four-parameter approach to establish the motion model of an AUV[J].Chinese Journal of Ship Research,2014,9(2): 12-29.(in Chinese))
    [4] LIN Xi-chuan, GUO Shu-xiang. A simplified dynamics modeling of a spherical underwater vehicle[C]// Proceeding of the 2008 IEEE International Conference on Robotics and Blomimetics,2009: 1140-1145.
    [5] Lee T. Computational geometric mechanics and control of rigid bodies[D]. Ph D Thesis. Michigan: University of Michigan, 2008.
    [6] Lee T, McClamroch H N, Leok M. A Lie group variational integrator for the attitude dynamics of a rigid body with application to the 3D pendulum[C]//Proceedings of the IEEE International Conference on Control Applications,2005: 962-967.
    [7] Nordkvist N, Sanyal A K. A Lie group variational integrator for rigid body motion in SE(3) with applications to underwater vehicle dynamics[C]//49th IEEE Conference on Decision and Control,2010: 5414-5419.
    [8] Jiménez F, Kobilarov M, de Diego D M. Discrete variational optimal control[J].Journal of Nonlinear Science,2013,23(3): 393-426.
    [9] 丁希仑, 刘颖. 用李群李代数分析具有空间柔性变形杆件的机器人动力学[J]. 机械工程学报, 2007,43(12):184-189.(DING Xi-lun, LIU Ying. Dynamics analysis of robot with spatial compliant links using Lie group and Lie algebra[J].Chinese Journal of Mechanical Engineering,2007,43(12): 184-189.(in Chinese))
    [10] 张继锋, 邓子辰, 张凯. 结构动力方程求解的改进精细Runge-Kutta方法[J]. 应用数学和力学, 2015,36(4): 378-385.(ZHANG Ji-feng, DENG Zi-chen, ZHANG Kai. An improved precise Runge-Kutta method for structural dynamic equations[J].Applied Mathematics and Mechanics,2015,36(4): 378-385.(in Chinese))
    [11] 李庆军, 叶学华, 王博, 王艳. 辛Runge-Kutta方法在卫星交会对接中的非线性动力学应用研究[J]. 应用数学和力学, 2014,〖STHZ〗35(12): 1299-1370.(LI Qing-jun, YE Xue-hua, WANG Bo, WANG Yan. Nonlinear dynamic behavior of the satellite rendezvous and docking based on the symplectic Runge-Kutta method[J].Applied Mathematics and Mechanics,2014,35(12): 1299-1370.(in Chinese))
    [12] 白龙, 戈新生. 基于李群离散变分积分子3D摆姿态动力学研究[J]. 北京信息科技大学学报, 2013,28(3): 14-18.(BAI Long, GE Xin-sheng. Attitude dynamics of 3D pendulum based on the Lie group variational integrator[J].Journal of Beijing Information Science and Technology University,2013,28(3): 14-18.(in Chinese))
    [13] 白龙, 戈新生. 基于球摆模型的离散变分积分子算法研究[J]. 动力学与控制学报, 2013,11(4): 295-300.(BAI Long, GE Xin-sheng. The discrete variational integrators method of the spherical pendulum[J].Journal of Dynamics and Control, 2013,11(4): 295-300.(in Chinese))
    [14] 刘延柱. 高等动力学[M]. 北京: 高等教育出版社, 2001: 93-105.(LIU Yan-zhu.Advanced Dynamics [M]. Beijing: Higher Education Press, 2001: 93-105.(in Chinese))
    [15] 丁丽娟, 程杞元. 数值计算方法[M]. 北京: 高等教育出版社, 2011: 300-305.(DING Li-juan, CHENG Qi-yuan.Numerical Computation Method [M]. Beijing: Higher Education Press, 2011: 300-305.(in Chinese))
    [16] Onishchik A L.Lie Groups and Lie Algebras: Foundations of Lie Theory, Lie Transformation Groups [M]. Beijing: Science Press, 2008: 44-52.
  • 加载中
计量
  • 文章访问数:  1711
  • HTML全文浏览量:  166
  • PDF下载量:  1225
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-30
  • 修回日期:  2015-06-20
  • 刊出日期:  2015-08-15

目录

    /

    返回文章
    返回