留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分数阶热传导方程激光加热瞬态温度场研究

许光映 王晋宝 韩志

许光映, 王晋宝, 韩志. 基于分数阶热传导方程激光加热瞬态温度场研究[J]. 应用数学和力学, 2015, 36(8): 844-854. doi: 10.3879/j.issn.1000-0887.2015.08.006
引用本文: 许光映, 王晋宝, 韩志. 基于分数阶热传导方程激光加热瞬态温度场研究[J]. 应用数学和力学, 2015, 36(8): 844-854. doi: 10.3879/j.issn.1000-0887.2015.08.006
XU Guang-ying, WANG Jin-bao, HAN Zhi. Study on the Transient Temperature Field Based on the Fractional Heat Conduction Equation for Laser Heating[J]. Applied Mathematics and Mechanics, 2015, 36(8): 844-854. doi: 10.3879/j.issn.1000-0887.2015.08.006
Citation: XU Guang-ying, WANG Jin-bao, HAN Zhi. Study on the Transient Temperature Field Based on the Fractional Heat Conduction Equation for Laser Heating[J]. Applied Mathematics and Mechanics, 2015, 36(8): 844-854. doi: 10.3879/j.issn.1000-0887.2015.08.006

基于分数阶热传导方程激光加热瞬态温度场研究

doi: 10.3879/j.issn.1000-0887.2015.08.006
详细信息
    作者简介:

    许光映(1967—),男,安徽人,副教授,硕士生导师(通讯作者. E-mail: xugy12@qq.com).

  • 中图分类号: O369

Study on the Transient Temperature Field Based on the Fractional Heat Conduction Equation for Laser Heating

  • 摘要: 基于分数阶Taylor(泰勒)级数展开原理,建立单相延迟一阶分数阶近似方程,获得分数阶热传导方程.针对短脉冲激光加热问题建立分数阶热传导方程组,并运用Laplace(拉普拉斯)变换方法进行求解,给出非Gauss(高斯)时间分布的激光内热源温度场解析解.针对具体算例数值研究温度波传播特性.结果表明热传播速度与分数阶阶次有关,分数阶阶次增加,热传播速度减小,温度变化幅度增加.分数阶方程可以用于描述介于扩散方程和热波方程间的热传输过程,且对热传播机制与分数阶热传导方程中分数阶项的关系做了深入剖析.
  • [1] Vyawahare V A, Nataraj P S V. Fractional-order modeling of neutron transport in a nuclear reactor [J].Applied Mathematical Modeling,2013,37(23): 9747-9767.
    [2] 刘静. 微米/纳米尺度传热学[M]. 北京: 科学出版社, 2001: 161-163.(LIU Jing.Nano/Micro Scale Heat Transfer [M]. Beijing: Science Press, 2001: 161-163.(in Chinese))
    [3] Joseph D D, Preziosi L. Heat waves[J].Reviews of Modern Physics,1989,61(1): 41-73.
    [4] Cattaneo C. Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée[J].Comptes Rendus de l’Académie des Sciences,1958,247: 431-433.
    [5] Vernotte P. Les paradoxes de la théorie continue de léquation de la chaleur[J].Compte Rendus,1958,246: 3154-3155.
    [6] 黄峰, 牛燕雄, 汪岳峰, 段晓峰. 光学窗口材料激光辐照热力效应的解析计算研究[J]. 光学学报, 2006,26(4): 576-580.(HUANG Feng, NIU Yan-xiong, WANG Yue-feng, DUAN Xiao-feng. Calculation of thermal and mechanical effect induced by laser in optical window materials[J].Acta Optica Sinica,2006,26(4): 576-580.(in Chinese))
    [7] 黄海明, 孙岳. 脉冲强激光辐照下材料响应的非傅里叶效应[J]. 强激光与粒子束, 2009,21(6): 808-812.(HUANG Hai-ming, SUN Yue. Non-Fourier response of target irradiated by multi-pulse high power laser[J].High Power Laser and Particle Beam,2009,21(6): 808-812.(in Chinese))
    [8] Yilbas B S, Al-Aqeeli N. Analytical investigation into laser pulse heating and thermal stresses[J].Optics & Laser Technology,2009,41(2): 132-139.
    [9] Yilbas B S, Al-Dweik A Y. Laser short pulse heating of metal nano-wires[J].Physica B: Condensed Matter,2012,407(22): 4473-4477.
    [10] Yilbas B S, Al-Dweik A Y, Bin Mansour S. Analytical solution of hyperbolic heat conduction equation in relation to laser short-pulse heating[J].Physica B: Condensed Matter,2011,406(8): 1550-1555.
    [11] JIANG Fang-ming, LIU Deng-ying, ZHOU Jian-hua. Non-Fourier heat conduction phenomena in porous material heated by microsecond laser pulse[J].Microscale Thermophysical Engineering,2003,6(4): 331-346.
    [12] 蒋方明, 刘登瀛. 多孔材料内非傅里叶导热现象的实验研究结果及理论分析[J]. 工程热物理学报, 2001,22(增刊): 77-80.(JIANG Fang-ming, LIU Deng-ying. Experimental and analytical results of non-Fourier conduction phenomenon in porous material[J].Journal of Engineering Thermophysics,2001,22(Suppl): 77-80.(in Chinese))
    [13] Scott Blair G W.The role of psychophysics in rheology[J].Journal of Colloid Science,1947,2(1): 21-32.
    [14] Gerasimov A N. A generalization pf linear laws of deformation and its application to inner friction problems[J].Prikl Matem i Mekh,1948,12(3): 251-259.(in Russian)
    [15] Hilfer R.Applications of Fractional Calculus in Physics [M]. Singapore: World Scientific, 2000.
    [16] Metzler R,Klafter J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach[J].Physics Reports,2000,339(1): 1-77.
    [17] Compte A, Metzler R. The generalized Cattaneo equation for the description of anomalous transport process[J].Journal of Physics A: Mathematical and General,1997,30(21): 7277-7289.
    [18] Povstenko Y Z. Fractional Cattaneo-type equations and generalized thermo-elasticity[J].Journal of Thermal Stresses,2011,34(2): 97-114.
    [19] 王颖泽, 王谦, 刘栋, 宋新南. 弹性半空间热冲击问题的广义热弹性解[J]. 应用数学和力学, 2014,35(6): 640-651.(WANG Ying-ze, WANG Qian, LIU Dong, SONG Xin-nan. Generalized thermoelastic solutions to the problems of thermal shock on elastic half space[J].Applied Mathematics and Mechanics,2014,35(6): 640-651.(in Chinese))
    [20] QI Hai-tao, XU Huan-ying, GUO Xin-wei. The Cattaneo-type time fractional heat conduction equation for laser heating[J].Computers & Mathematics With Applications,2013,66(5): 824-831.
    [21] Tzou D Y.Macro- to Microscale Heat Transfer: The Lagging Behavior [M]. Washington DC: Taylor & Francis, 1996: 1-64.
    [22] Odibat Z M, Shawagfeh N T. Generalized Taylor’s formula[J].Applied Mathematics and Computation,2007,186(1): 286-293.
    [23] Podlubny I.Fractional Differential Equations [M]. New York: Academic Press, 1999: 150.
    [24] NIU Tian-chan, DAI Wei-zhong. A hyperbolic two-step model based finite difference scheme for studying thermal deformation in a double-layered thin film exposed to ultra-short-pulsed lasers[J].International Journal of Thermal Sciences,2009,48(1): 34-49.
    [25] Xu M Y, Tan W C. Intermediate processes and critical phenomena: theory, method and progress of fractional operators and their applications to modern mechanics[J].Science China: Physics, Mechanics & Astronomy,2006,49(3): 257-272.
  • 加载中
计量
  • 文章访问数:  1570
  • HTML全文浏览量:  178
  • PDF下载量:  1487
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-29
  • 修回日期:  2015-04-22
  • 刊出日期:  2015-08-15

目录

    /

    返回文章
    返回