留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

守恒高阶各向异性交通流模型基于POD方法的降阶外推差分格式

罗振东 徐源

罗振东, 徐源. 守恒高阶各向异性交通流模型基于POD方法的降阶外推差分格式[J]. 应用数学和力学, 2015, 36(8): 875-886. doi: 10.3879/j.issn.1000-0887.2015.08.009
引用本文: 罗振东, 徐源. 守恒高阶各向异性交通流模型基于POD方法的降阶外推差分格式[J]. 应用数学和力学, 2015, 36(8): 875-886. doi: 10.3879/j.issn.1000-0887.2015.08.009
LUO Zhen-dong, XU Yuan. A Reduced-Order Extrapolating FDM for Conserved High-Order Anisotropic Traffic Flow Models[J]. Applied Mathematics and Mechanics, 2015, 36(8): 875-886. doi: 10.3879/j.issn.1000-0887.2015.08.009
Citation: LUO Zhen-dong, XU Yuan. A Reduced-Order Extrapolating FDM for Conserved High-Order Anisotropic Traffic Flow Models[J]. Applied Mathematics and Mechanics, 2015, 36(8): 875-886. doi: 10.3879/j.issn.1000-0887.2015.08.009

守恒高阶各向异性交通流模型基于POD方法的降阶外推差分格式

doi: 10.3879/j.issn.1000-0887.2015.08.009
基金项目: 国家自然科学基金(11271127)
详细信息
    作者简介:

    罗振东(1958—),男,广西桂平人,教授,博士,博士生导师(通迅作者. E-mail: hdluo@ncepu.edu.cn).

  • 中图分类号: O242.21

A Reduced-Order Extrapolating FDM for Conserved High-Order Anisotropic Traffic Flow Models

Funds: The National Natural Science Foundation of China(11271127)
  • 摘要: 利用Godunov流方法和特征投影分解方法,对守恒高阶各向异性交通流模型建立一种自由度很少、精度足够高的降阶外推差分算法, 并给出这种降阶外推差分算法近似解的误差估计和算法实现.最后,用数值例子说明数值结果与理论结果相吻合,并阐明这种降阶外推差分算法的优越性.
  • [1] Payne H J. Models of freeway traffic and control[C]// Part of the Simulation Councils Proceeding Series . Mathematical Models of Public Systems, 1971: 51-60.
    [2] Daganzo C F. Requiem for second-order fluid approximations of traffic flow[J].Transportation Research, Part B: Methodological, 1995,29(4): 277-286.
    [3] Aw A, Rascle M. Resurrection of “second order” models of traffic flow[J].SIAM Journal of Applied Mathematics,2000,60(3): 916-938.
    [4] Fukunaga K.Introduction to Statistical Recognition [M]. New York: Academic Press, 1990.
    [5] Zhang H M. A non-equilibrium traffic model devoid of gas-like behavior[J].Transportation Research, Part B: Methodological,2002,36(3): 275-290.
    [6] ZHANG Peng, Wong S C, Dai S Q. A conserved higher-order anisotropic traffic flow model: description of equilibrium and nonequilibrium flows[J].Transportation Research, Part B: Methodological,2009,43(5): 562-574.
    [7] Holmes P, Lumley J L, Berkooz G.Turbulence, Coherent Structures, Dynamical Systems and Symmetry [M]. Cambridge: Cambridge University Press, 1996.
    [8] Fukunaga K.Introduction to Statistical Recognition [M]. New York: Academic Press, 1990.
    [9] Jolliffe I T.Principal Component Analysis [M]. Berlin: Springer-Verlag, 2002.
    [10] LUO Zhen-dong, ZHOU Yan-jie, YANG Xiao-zhong. A reduced finite element formulation based on proper orthogonal decomposition for Burgers equation[J].Applied Numerical Mathematics, 2009, 59(8): 1933-1946.
    [11] LI Huan-rong, LUO Zhen-dong, CHEN Jing. Numerical simulation based on proper orthogonal decomposition for two-dimensional solute transport problem[J].Applied Mathematical Modeling, 2011, 35(5): 2489-2498.
    [12] LUO Zhen-dong, XIE Zheng-hui, CHEN Jing. A reduced MFE formulation based on POD for the non-stationary conduction-convection problems[J].Acta Mathematica Scientia, 2011, 31(5): 1765-1785.
    [13] LUO Zhen-dong, LI Hong, ZHOU Yan-jie, HUANG Xiao-ming. A reduced FVE formulation based on POD method and error analysis for two-dimensional viscoelastic problem[J].Journal of Mathematical Analysis and Applications, 2012, 385(1): 310-321.
    [14] LUO Zhen-dong, CHEN Jing, Navon I M, YANG Xiao-zhong. Mixed finite element formulation and error estimates based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations[J].SIAM Journal on Numerical Analysis, 2008, 47(1): 1-19.
    [15] LUO Zhen-dong, WANG Rui-wen, ZHU Jiang. Finite difference scheme based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations[J].Science in China Series A: Mathematics, 2007,50(8): 1186-1196.
    [16] 孙萍, 罗振东, 周艳杰. 热传导对流方程基于POD的差分格式[J]. 计算数学, 2009,31(3): 323-334.(SUN Ping, LUO Zhen-dong, ZHOU Yan-jie. A FDS based on POD method for convection heat conduction equation[J].Mathematica Numerica Sinica, 2009, 31(3): 323-334.(in Chinese))
    [17] LUO Zhen-dong, LI Hong, ZHOU Yan-jie, XIE Zhen-hui. A reduced finite difference scheme and error estimates based on POD method for two-dimensional solute transport problems[J].Journal of Mathematical Analysis and Applications, 2012, 385(1): 371-383.
    [18] LUO Zhen-dong, DU Juan, XIE Zheng-hui, GUO Yan. A reduced stabilized mixed finite element formulation based on proper orthogonal decomposition for the no-stationary Navier-Stokes equations[J].International Journal for Numerical Methods in Engineering, 2011, 88(1): 31-46.
    [19] LUO Zhen-dong, CHEN Jing, XIE Zheng-hui, AN Jing, SUN Ping. A reduced second-order time accurate finite element formulation based on POD for parabolic equations[J].Science in China for Series A: Mathematics, 2011, 41(5): 447-460.
    [20] 罗振东, 欧秋兰, 谢亚辉. 非定常Stokes方程一种基于POD方法的简化有限差分格式[J]. 应用数学和力学, 2011, 32(7): 795-806.(LUO Zhen-dong, OU Qiu-lan, XIE Zheng-hui. A reduced finite difference scheme and error edtimates based on POD method for the non-stationary Stokes equation[J].Applied Mathematics and Mechanics, 2011, 32(7): 795-806.(in Chinese))
    [21] LUO Zhen-dong, CHEN Jing, ZHU Jiang, WANG Rui-wen, Navon I M. An optimizing reduced order FDS for the tropical Pacific Ocean reduced gravity model[J].International Journal for Numerical Methods in Fluids,2007, 55(2): 143-161.
    [22] LUO Zhen-dong, CHEN Jing, Navon I M, ZHU Jiang. An optimizing reduced PLSMFE formulation for non-stationary conduction-convection problems[J].International Journal for Numerical Methods in Fluid,2009, 60(4): 409-436.
    [23] 罗振东, 高俊强, 孙萍, 安静. 交通流模型基于特征投影分解技术的外推降维有限差分格式[J]. 计算数学, 2013,35(2): 159-170.(LUO Zhen-dong, GAO Jun-qiang, SUN Ping, AN Jing. A extrapolation reduced-order FDS based on POD technique for traffic flow model[J].Mathematica Numerica Sinica, 2013,35(2): 159-170.(in Chinese))
    [24] LUO Zhen-dong, XIE Di, TENG Fei. A POD-based reduced-order FD extrapolating algorithm for traffic flow[J].Advances in Difference Equations,2014,2014(269): 1-13.
    [25] 张文生. 科学计算中的偏微分方程有限差分方法[M]. 高等教育出版社, 2006.(ZHANG Wen-sheng.Finite Difference Methods for Partial Differential Equations in Science Computation [M]. Higher Education Press, 2006.(in Chinese))
    [26] 刘儒勋, 舒其旺. 计算流体力学的若干新方法[M]. 北京: 科学出版社, 2003.(LIU Ru-xun, SHU Qi-wang.Several New Methods of Computational Fluid Dynamics [M]. Beijing: Science Press, 2003.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1593
  • HTML全文浏览量:  186
  • PDF下载量:  986
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-16
  • 修回日期:  2015-07-03
  • 刊出日期:  2015-08-15

目录

    /

    返回文章
    返回