[1] |
Lysmer J, Kuhlemeyer R L. Finite dynamic model for infinite media[J]. Journal of the Engineering Mechanics Division,1969,95(4): 869-878.
|
[2] |
White W, Valliappan S, Lee I K. Unified boundary for finite dynamic model[J]. Journal of the Engineering Mechanics Division,1977,103(5): 949-964.
|
[3] |
Marfurt K J. Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations[J]. Geophysics,1984,49(5): 533-549.
|
[4] |
Clayton R, Engquist B. Absorbing boundary conditions for acoustic and elastic wave equations[J]. Bulletin of the Seismological Society of America,1977,67(6): 1529-1540.
|
[5] |
Engquist B, Majda A. Absorbing boundary conditions for numerical simulation of waves[J]. Proceedings of the National Academy of Sciences,1977,74(5): 1765-1766.
|
[6] |
LIAO Zhen-feng, HUANG Kong-liang, YANG Bai-po, YUAN Yi-fan. A transmitting boundary for transient wave analyses[J]. Science China: Mathematics,1984,27(10): 1063-1076.
|
[7] |
Higdon R L. Numerical absorbing boundary conditions for the wave equation[J]. Mathematics of computation,1987,49(179): 65-90.
|
[8] |
熊章强, 唐圣松, 张大洲. 瑞利面波数值模拟中的PML吸收边界条件[J]. 物探与化探, 2009,33(4): 453-457.(XIONG Zhang-qiang, TANG Sheng-song, ZHANG Da-zhou. PML absorbing boundary condition for numerical modeling of Rayleigh wave[J]. Geophysical and Geochemical Exploration,2009,33(4): 453-457.(in Chinese))
|
[9] |
Berenger J P. Three-dimensional perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics,1996,127(2): 363-379.
|
[10] |
Udagedara I, Premaratne M, Rukhlenko I D, Hattori H T, Agrawal G P. Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials[J]. Optics Express,2009,17(23): 21179-21190.
|
[11] |
MA You-neng, YU Jin-hua, WANG Yuan-yuan. A novel unsplit perfectly matched layer for the second-order acoustic wave equation[J]. Ultrasonics,2014,54(6): 1568-1574.
|
[12] |
Komatitsch D, Tromp J. A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation[J]. Geophysical Journal International,2003,154(1): 146-153.
|
[13] |
PING Ping, ZHANG Yu, XU Yi-xian. A multiaxial perfectly matched layer (M-PML) for the long-time simulation of elastic wave propagation in the second-order equations[J]. Journal of Applied Geophysics,2014,101: 124-135.
|
[14] |
张洪欣, 吕英华, 黄永明. 柱坐标系下PML-FDTD及总场-散射场区连接条件[J]. 重庆邮电学院学报, 2003,15(3): 4-8.(ZHANG Hong-xin, LU Ying-hua, HUANG Yong-ming. The study on PML-FDTD and boundary connecting conditions of total-scattering fields in 3-D cylindrical coordinates[J]. Journal of Chongqing University of Posts and Telecommunications,2003,15(3): 4-8.(in Chinese))
|
[15] |
Teixeira F L, Chew W C. PML-FDTD in cylindrical and spherical grids[J]. Microwave and Guided Wave Letters,IEEE,1997,7(9): 285-287.
|
[16] |
Teixeira F L, Chew W C. Finite-difference computation of transient electromagnetic waves for cylindrical geometries in complex media[J]. Geoscience and Remote Sensing, IEEE Transactions on,2000,38(4): 1530-1543.
|
[17] |
HE Jiang-qi, LIU Qing-huo. A nonuniform cylindrical FDTD algorithm with improved PML and quasi-PML absorbing boundary conditions[J]. Geoscience and Remote Sensing, IEEE Transactions on,1999,37(2): 1066-1072.
|
[18] |
LIU Qing-huo, HE Jiang-qi. An efficient PSTD algorithm for cylindrical coordinates[J].IEEE transactions on Antennas and Propagation,2001,49(9): 1349-1351.
|
[19] |
LIU Qing-huo. Perfectly matched layers for elastic waves in cylindrical and spherical coordinates[J]. The Journal of the Acoustical Society of America,1999,105(4): 2075-2084.
|
[20] |
ZHENG Yi-bing, HUANG Xiao-jun. Anisotropic perfectly matched layers for elastic waves in Cartesian and curvilinear coordinates[R]. Earth Resources Laboratory Industry Consortia Annual Report. Earth Resources Laboratory, Massachusetts Institute of Technology, 2002: 1-18.
|
[21] |
SHI Dong-yang, LIAO Xin, TANG Qi-li. Highly efficient H1-Galerkin mixed finite element method(MFEM) for parabolic integro-differential equation[J]. Applied Mathematics and Mechanics(English Edition),2014,35(7): 897-912.
|
[22] |
Collino F, Tsogka C. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media[J]. Geophysics,2001,66(1): 294-307.
|
[23] |
Matzen R. An efficient finite element time-domain formulation for the elastic second-order wave equation: a non-split complex frequency shifted convolutional PML[J].International Journal for Numerical Methods in Engineering,2011,88(10): 951-973.
|