留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑流固耦合效应的重力坝水力劈裂模拟

王克峰 章青 夏晓舟

王克峰, 章青, 夏晓舟. 考虑流固耦合效应的重力坝水力劈裂模拟[J]. 应用数学和力学, 2015, 36(9): 970-980. doi: 10.3879/j.issn.1000-0887.2015.09.008
引用本文: 王克峰, 章青, 夏晓舟. 考虑流固耦合效应的重力坝水力劈裂模拟[J]. 应用数学和力学, 2015, 36(9): 970-980. doi: 10.3879/j.issn.1000-0887.2015.09.008
WANG Ke-feng, ZHANG Qing, XIA Xiao-zhou. Modeling of Hydraulic Fracturing of Concrete Gravity Dam Considering Fluid-Structure Interaction[J]. Applied Mathematics and Mechanics, 2015, 36(9): 970-980. doi: 10.3879/j.issn.1000-0887.2015.09.008
Citation: WANG Ke-feng, ZHANG Qing, XIA Xiao-zhou. Modeling of Hydraulic Fracturing of Concrete Gravity Dam Considering Fluid-Structure Interaction[J]. Applied Mathematics and Mechanics, 2015, 36(9): 970-980. doi: 10.3879/j.issn.1000-0887.2015.09.008

考虑流固耦合效应的重力坝水力劈裂模拟

doi: 10.3879/j.issn.1000-0887.2015.09.008
基金项目: 国家自然科学基金(51179064; 11132003; 11372099); 中央高校基本科研业务费(2013B32714)
详细信息
    作者简介:

    王克峰(1986—),男,山东临沂人,博士生(E-mail: hhuwkf@126.com);章青(1963—),男,安徽铜陵人,教授,博导(通讯作者. E-mail: lxzhangqing@hhu.edu.cn);夏晓舟(1976—),男,江西泰和人,副教授,博士(E-mail: xiaxiaozhou@163.com).

  • 中图分类号: O242.21;O346.1

Modeling of Hydraulic Fracturing of Concrete Gravity Dam Considering Fluid-Structure Interaction

Funds: The National Natural Science Foundation of China(51179064; 11132003; 11372099)
  • 摘要: 裂缝的高压水力劈裂是混凝土高坝安全评估的重要部分,研究其过程中的流固耦合作用是准确预测在各种情况下裂纹扩展路径和危险程度的关键.该文利用扩展有限元法在模拟裂纹扩展方面的优势,对大坝的裂纹进行水力劈裂模拟研究.裂纹中的水压分布模型采用Brühwiler和Saouma水力劈裂试验的成果,体现了水压和裂纹宽度的耦合关系,给出了扩展有限元在裂纹面上施加水压力荷载的实施方法,对一典型重力坝裂纹的水力劈裂进行了数值模拟分析.研究结果表明:采用扩展有限元法模拟水力劈裂,克服了常规有限元法存在的缺点,裂纹扩展时不用重新划分网格,裂纹的实时宽度可以由加强节点的附加自由度得到,裂纹面上水压的施加也变得简单易行.当考虑裂纹内的流固耦合效应时,裂纹的扩展路径相比不考虑耦合效应时的扩展路径(均布全水头水压),扩展角变大,扩展距离变短.
  • [1] Murdoch L C. Forms of hydraulic fractures created during a field test in fine-grained glacial drift[J]. Quarterly Journal Engineering Geology,1995,28(1): 23-25.
    [2] 贾金生, 李新宇, 郑璀莹. 特高重力坝考虑高压水劈裂影响的初步研究[J]. 水利学报, 2006,37(12): 1509-1515.(JIA Jin-sheng, LI Xin-yu, ZHENG Cui-ying. Studies on problem of high gravity dams higher than 200m with consideration of hydraulic fracturing under water pressure[J]. Journal of Hydraulic Engineering,2006,37(12): 1509-1515.(in Chinese))
    [3] Brühwiler E, Saouma V E. Water fracture interaction in concrete—part Ⅰ: fracture properties[J]. ACI Materials Journal,1995,92(3): 296-303.
    [4] Brühwiler E, Saouma V E. Water fracture interaction in concrete—part Ⅱ: hydrostatic pressure in cracks[J]. ACI Materials Journal,1995,92(4): 383-390.
    [5] Slowik V, Saouma V E. Water pressure in propagating concrete cracks[J]. Journal of Structural Engineering,2000,126(3): 235-242.
    [6] 王建敏. 静水压力环境下混凝土裂缝扩展与双K断裂参数试验研究[D]. 博士学位论文. 大连: 大连理工大学, 2008.(WANG Jian-min. Experimental study on crack propagation and fracture parameters of concrete dams on hydrostatic pressure circumstance[D]. PhD Thesis. Dalian: Dalian University of Technology, 2008.(in Chinese))
    [7] 李宗利, 任青文, 王亚红. 岩石与混凝土水力劈裂缝内水压分布的计算[J].水利学报, 2005,36(6): 656-661.(LI Zong-li, REN Qing-wen, WANG Ya-hong. Formula for water pressure distribution in rock or concrete fractures formed by hydraulic fracturing[J]. Journal of Hydraulic Engineering,2005,36(6): 656-661.(in Chinese))
    [8] 黄云, 金峰, 王光纶, 张楚汉. 高拱坝上游坝踵裂缝稳定性及其扩展[J].清华大学学报(自然科学版), 2002,42(4): 555-559.(HUANG Yun, JIN Feng, WANG Guang-lun, ZHANG Chu-han. Stability and propagation of cracks at the heel of high arch dams[J]. Journal of Tsinghua University(Science and Technology),2002,42(4): 555-559.(in Chinese))
    [9] Barpi F, Valente S. Modeling water penetration at dam-foundation joint[J]. Engineering Fracture Mechanics,2007,75(3): 629-642.
    [10] Hunsweck M J, Shen Y X, Lew A J. A finite element approach to simulation of hydraulic fractures with lag[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2013,37(9): 993-1015.
    [11] Shimizu H, Murata S, Ishida T. The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution[J]. International Journal for Rock Mechanics and Mining Sciences,2011,48(5): 712-727.
    [12] Ganis B, Mear M E, Sakhaee-Pour A, Wheeler M F, Wick T. Modeling fluid injection in fractures with a reservoir simulator coupled to a boundary element method[J]. Computational Geosciences,2014,18(5): 613-624.
    [13] Shi G H. Manifold method of material analysis[R]. Transactions of the 9th Army Conference on Applied Mathematics and Computing. Report No. 92-1, U.S. Army Research Office, Minneapolis, MN, 1991: 57-76.
    [14] Zheng H, Xu D D. New strategies for some issues of numerical manifold method in simulation of crack propagation[J]. International Journal for Numerical Methods in Engineering,2014,97(13): 986-1010.
    [15] 方修君, 金峰. 裂隙水流与混凝土开裂相互作用的耦合模型[J].水利学报, 2007,38(12): 1466-1474.(FANG Xiu-jun, JIN Feng. Coupling model for interaction between fissure water and cracking in concrete[J]. Journal of Hydraulic Engineering,2007,38(12): 1466-1474.(in Chinese))
    [16] 董玉文, 任青文. 重力坝水力劈裂分析的扩展有限元法[J].水利学报, 2011,42(11): 1361-1367.(DONG Yu-wen, REN Qing-wen. An extended finite element method for modeling hydraulic fracturing in gravity dam[J]. Journal of Hydraulic Engineering,2011,42(11): 1361-1367.(in Chinese))
    [17] 江守燕, 杜成斌. 动载下缝端应力强度因子计算的扩展有限元法[J]. 应用数学和力学, 2013,34(6): 586-597.(JIANG Shou-yan, DU Cheng-bin. Evaluation on stress intensity factors at the crack tip under dynamic loads using extended finite element methods[J]. Applied Mathematics and Mechanics,2013,34(6): 586-597.(in Chinese))
    [18] 曾青冬, 姚军. 基于扩展有限元的页岩水力压裂数值模拟[J]. 应用数学和力学, 2014,35(11): 1239-1248.(ZENG Qing-dong, YAO Jun. Numerical simulation of shale hydraulic fracturing based on the extended finite element method[J]. Applied Mathematics and Mechanics,2014,35(11): 1239-1248.(in Chinese))
    [19] Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering,1999,45(5): 601-620.
    [20] Karihaloo B L, Xiao Q Z. Modeling of stationary and growing cracks in FE framework without remeshing: a state-of-the-art review[J]. Computers and Structures,2003,81(3): 119-129.
    [21] MelenkJ M, Babuska I. The partition of unity finite element method: basic theory and applications[J]. Computer Methods in Applied Mechanics & Engineering,1966,139(1/3): 289-314.
    [22] Mos N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering,1999,46(1): 131-150.
    [23] Lecampion B. An extended finite element method for hydraulic fracture problems[J]. Communications in Numerical Methods in Engineering,2009,25(2): 121-133.
    [24] Erdogan F, Sih G C. On the crack extension in plates under plane loading and transverse shear[J]. Journal of Basic Engineering,1963,85(4): 519-527.
    [25] Nagashima T, Omoto Y, Tani S. Stress intensity factor analysis of interface cracks using X-FEM[J]. International Journal for Numerical Methods in Engineering,2003,56(8): 1151-1173.
    [26] Yau J F, Wang S S. An analysis of interface cracks between dissimilar isotropic materials using conservation integral in elasticity[J]. Engineering Fracture Mechanics,1984,20(3): 423-432.
    [27] Dolbow J, Moes N, Belytschko T. An extended finite element method for modeling crack growth with frictional contact[J]. Computer Methods in Applied Mechanics and Engineering,2001,190(51/52): 6825-6846.
    [28] 董玉文. 基于扩展有限元法的混凝土结构开裂数值分析研究[D]. 博士学位论文. 南京: 河海大学,2008.(DONG Yu-wen. Numerical analysis of concrete structure cracking based on extended finite element method[D]. PhD Thesis. Nanjing: Hohai University, 2008.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1320
  • HTML全文浏览量:  132
  • PDF下载量:  732
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-19
  • 修回日期:  2015-04-09
  • 刊出日期:  2015-09-15

目录

    /

    返回文章
    返回