留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有限位移理论的功的互等定理及其应用

付宝连

付宝连. 有限位移理论的功的互等定理及其应用[J]. 应用数学和力学, 2015, 36(10): 1019-1034. doi: 10.3879/j.issn.1000-0887.2015.10.002
引用本文: 付宝连. 有限位移理论的功的互等定理及其应用[J]. 应用数学和力学, 2015, 36(10): 1019-1034. doi: 10.3879/j.issn.1000-0887.2015.10.002
FU Bao-lian. The Reciprocal Theorem for the Finite Displacement Theory and Its Applications[J]. Applied Mathematics and Mechanics, 2015, 36(10): 1019-1034. doi: 10.3879/j.issn.1000-0887.2015.10.002
Citation: FU Bao-lian. The Reciprocal Theorem for the Finite Displacement Theory and Its Applications[J]. Applied Mathematics and Mechanics, 2015, 36(10): 1019-1034. doi: 10.3879/j.issn.1000-0887.2015.10.002

有限位移理论的功的互等定理及其应用

doi: 10.3879/j.issn.1000-0887.2015.10.002
详细信息
    作者简介:

    付宝连(1934—),男,辽宁辽阳人,教授(E-mail: ysufubaolian@163.com).

  • 中图分类号: TU311;O343.2

The Reciprocal Theorem for the Finite Displacement Theory and Its Applications

  • 摘要: 提出了有限位移理论三维线弹性力学的功的互等定理.基于这一定理,导出了大挠度弯曲矩形板的功的互等定理.同时,应用简化矩形板的定理,直接得到了大挠度板条的功的互等定理.作为应用,计算了在均载作用下两端固定大挠度板条的弯曲和在均载作用下4边固定大挠度矩形板的弯曲.计算表明,根据弯曲薄板大挠度功的互等定理,大挠度弯曲矩形板可应用小挠度的相应基本解得以简单解决.
  • [1] Maxwell J C. On calculation of the equilibrium and stiffness of frames[J].Philosophical Magazine Series 4, 1864,27(182): 294-299.
    [2] Betti E. Teoria della elasticita’[J].Nuovo Cimento,1872,7/8(1): 69-97.
    [3] Rayleigh L. More general form of reciprocal theorem[J].Scientific Papers,1873,1: 179-184.
    [4] Lamb H. On reciprocal theorem in dynamics[J].Proceedings of the London Mathematical Society,1887,1(1): 144-151.
    [5] Aндреев Н Н. Теорема взаимностн в теорий колебаний и акустике[J].Физ Словарь,1936,1: 458-459.(Andleev N N. Reciprocal theorem in theory of vibration and sound[J].Phy Dictionary,1936,1: 458-459.(in Russian))
    [6] 胡海昌. 论弹性动力学中的倒易定理及它的一些应用[J]. 力学学报, 1957,1(1): 63-71.(HU Hai-chang. On reciprocal theorem in elasto-dynamics and its some applications[J].Mechanica Sinica,1957,1(1): 63-71.(in Chinese))
    [7] Payton R G. An application of the dynamic Betti-Rayleigh reciprocal theorem to moving point load in elastic media[J].Quarterly of Applied Mathematics,1964,21(4): 299-313.
    [8] Iesan D. On reciprocal theorems and variational theorems in linear elasto-dynamicis[J].Bulletin de l’Academie des Sciences, Serie des Sciences Techniques,1974,22: 273-281.
    [9] Айнола Л Я. К теореме взаимности для динамических задач теории упргости[J].Прикладная Математика и Mеханика,1967,31(1): 176-182.(Ainora L Y. On reciprocal theorem for dynamic problems of elasticity[J].Journal of Applied Mathematics and Mechanics,1967,31(1): 176-182.(in Russian))
    [10] 付宝连. 关于功的互等定理与叠加原理的等价性[J]. 应用数学和力学, 1985,6(9): 813-816.(FU Bao-lian. On equivalents of the reciprocal theorem to superposition principles[J].Applied Mathematics and Mechanics,1985,6(9): 813-816.(in Chinese))
    [11] 付宝连. 广义倒易定理及其应用[J]. 应用数学和力学, 2002,23(2): 188-194.(FU Bao-lian. Generalized reciprocal theorem and it is applications[J].Applied Mathematics and Mechanics,2002,23(2): 188-194.(in Chinese))
    [12] 付宝连. 应用功的互等定理求解具有复杂边界条件的矩形板的挠曲面方程[J]. 应用数学和力学, 1982,3(3): 315-325.(FU Bao-lian. Applications of reciprocal theorem to solving the equations of deflection surface of rectangular plates with various edge conditions[J].Applied Mathematics and Mechanics,1982,3(3): 315-325.(in Chinese))
    [13] 付宝连, 李农. 弹性矩形薄板受迫振动的功的互等定理法(Ⅰ)——四边固定的矩形板和三边固定的矩形板[J]. 应用数学和力学, 1989,10(8): 693-714.(FU Bao-lian, LI Nong. The method of the reciprocal theorem of forced vibration for the elastic thin rectangular plates(Ⅰ)——rectangular plates with four clamped edges and with three clamped edges[J].Applied Mathematics and Mechanics,1989,10(8): 693-714.(in Chinese))
    [14] 付宝连, 李农. 弹性矩形薄板受迫振动的功的互等定理法(Ⅱ)——两邻边固定的矩形板[J]. 应用数学和力学, 1990,11(11): 977-988.(FU Bao-lian, LI Nong. The method of the reciprocal theorem of forced vibration for the elastic thin rectangular plates(Ⅱ)—rectangular plates with two adjacent clamped edges[J].Applied Mathematics and Mechanics,1990,11(11): 977-988.(in Chinese))
    [15] 付宝连, 李农. 弹性矩形薄板受迫振动的功的互等定理法(Ⅲ)——悬臂矩形板[J]. 应用数学和力学, 1991,12(7): 613-620.(FU Bao-lian, LI Nong. The method of the reciprocal theorem of forced vibration for the elastic thin rectangular plates(Ⅲ)—cantilever rectangular plates[J].Applied Mathematics and Mechanics,1991,12(7): 613-620.(in Chinese))
    [16] 付宝连. 应用功的互等定理法求解立方体的位移解[J]. 应用数学和力学, 1989,10(4): 297-308.(FU Bao-lian. Application of the method of the reciprocal theorem to finding displacement solutions of cubes[J].Applied Mathematics and Mechanics,1989,10(4): 297-308.(in Chinese))
    [17] 付宝连. 关于求解弹性力学平面问题的功的互等定理法[J]. 应用数学和力学, 1989,10(5): 437-446.(FU Bao-lian. On the method of reciprocal theorem to finding solutions of the plane problems of elasticity[J].Applied Mathematics and Mechanics,1989,10(5): 437-446.(in Chinese))
    [18] 付宝连.弯曲薄板的修正的功的互等定理及其应用[J]. 应用力学和数学, 2014,35(11):1197-1209.(FU Bao-lian. The corrected reciprocal theorem of bending of thin plates and its applications[J].Applied Mathematics and Mechanics,2014,35(11): 1197-1209.(in Chinese))
    [19] 付宝连. 三维线弹性力学修正的功的互等定理及其应用[J]. 应用力学和数学, 2015,36(5): 523-538.(FU Bao-lian. The corrected reciprocal theorem of three dimensional linear elasticity and its application[J].Applied Mathematics and Mechanics,2015,36(5): 523-538. (in Chinese))
    [20] Novoshilov V V.Foundations of the Nonlinear Theory of Elasticity [M]. Roches-Ter, N Y: Graylook Press, 1955.
    [21] Reissner E. On a variational theorem for finite elastic deformations[J].Journal Mathematics and Physics,1953,32(2/3): 129-135.
    [22] HE Ji-huan. Family of generalized variational principles for nonlinear elasticity with finite displacement[J].Journal of China Univernsity of Mining & Technology,1999-2.
    [23] Teregllov I G. On a variational theorem of the nonlinear theory of elasticity[J].PMM,26(1): 167-171.
    [24] Timoshenko S P, Woinowsky-Krieger.Theory of Plates and Shells [M]. 2nd ed. New York: McGraw-Hill Inc, 1959.
  • 加载中
计量
  • 文章访问数:  1725
  • HTML全文浏览量:  124
  • PDF下载量:  825
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-14
  • 修回日期:  2015-06-05
  • 刊出日期:  2015-10-15

目录

    /

    返回文章
    返回