留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类非线性双曲型发展方程的孤子解

冯依虎 陈贤峰 莫嘉琪

冯依虎, 陈贤峰, 莫嘉琪. 一类非线性双曲型发展方程的孤子解[J]. 应用数学和力学, 2015, 36(10): 1076-1084. doi: 10.3879/j.issn.1000-0887.2015.10.007
引用本文: 冯依虎, 陈贤峰, 莫嘉琪. 一类非线性双曲型发展方程的孤子解[J]. 应用数学和力学, 2015, 36(10): 1076-1084. doi: 10.3879/j.issn.1000-0887.2015.10.007
FENG Yi-hu, CHEN Xian-feng, MO Jia-qi. The Soliton Solutions to a Class of Nonlinear Hyperbolic Evolution Equations[J]. Applied Mathematics and Mechanics, 2015, 36(10): 1076-1084. doi: 10.3879/j.issn.1000-0887.2015.10.007
Citation: FENG Yi-hu, CHEN Xian-feng, MO Jia-qi. The Soliton Solutions to a Class of Nonlinear Hyperbolic Evolution Equations[J]. Applied Mathematics and Mechanics, 2015, 36(10): 1076-1084. doi: 10.3879/j.issn.1000-0887.2015.10.007

一类非线性双曲型发展方程的孤子解

doi: 10.3879/j.issn.1000-0887.2015.10.007
基金项目: 国家自然科学基金(11371248);安徽省教育厅自然科学课题(KJ2015A347;KJ2013B153)
详细信息
    作者简介:

    冯依虎(1982—),男,安徽潜山人,副教授,硕士(E-mail: fengyihubzsz@163.com);莫嘉琪(1937—),男,浙江德清人,教授(通讯作者. E-mail: mojiaqi@mail.ahnu.edu.cn).

  • 中图分类号: O175.29

The Soliton Solutions to a Class of Nonlinear Hyperbolic Evolution Equations

Funds: The National Natural Science Foundation of China(11371248)
  • 摘要: 研究了一类非线性发展方程.首先在无扰动情形下,利用待定函数和泛函同伦映射方法得到了非扰动发展方程的孤子精确解和扰动方程的任意次近似行波孤子解.接着引入一个同伦映射,并选取初始近似函数,再用同伦映射理论,依次求出非线性双曲型发展扰动方程孤子解的各次近似解析解.再利用摄动理论举例说明了用该方法得到的近似解析解的有效性和各次近似解的近似度.最后,简述了用同伦映射方法得到的近似解的意义,指出了用上述方法得到的各次近似解具有便于求解、精度高等优点.
  • [1] Parkes E J. Some periodic and solitary travelling-wave solutions of the short-pulse equation[J]. Chaos, Solitons & Fractals,2008, 38(1): 154-159.
    [2] FANG Jian-ping, ZHENG Chun-long. New exact excitations and soliton fission and fusion for the (2+1)-dimensional Broer-Kaup-Kupershmidt system[J]. Chinese Physics,2005,14(4): 669-675.
    [3] WANG Ming-liang. Solitary wave solutions for variant Boussinesq equations[J]. Physics Letters A,1996, 212(6): 353.
    [4] Sirendaoreji, SUN Jiong. Auxiliary equation method for solving nonlinear partial differential equations[J]. Physics Letters A,2003,309(5/6): 387-396.
    [5] ZHANG Shun-li, ZHU Xiao-ning, WANG Yong-mao, LOU Sen-yue. Extension of variable separable solutions for nonlinear evolution equations[J]. Communications in Theoretical Physics,2008, 49(4): 829-832.
    [6] ZHANG Shun-li, LOU Sen-yue. Functional variable separation for extended nonlinear elliptic equations[J]. Communications in Theoretical Physics,2007,48(3): 385-390.
    [7] 马松华, 吴小红, 方建平, 郑春龙. (3+1)维Burgers系统的新精确解及其特殊孤子结构[J]. 物理学报, 2008, 57(1): 11-17.(MA Song-hua, WU Xiao-hong, FANG Jian-ping, ZHENG Chun-long. New exact solutions and special soliton structures for the (3+1)-dimensional Burgers system[J]. Acta Physica Sinica,2008, 57(1): 11-17.(in Chinese))
    [8] 范恩贵, 张鸿庆. 非线性波动方程的孤波解[J]. 物理学报, 1997,46(7): 1254-1258.(FAN En-gui, ZHANG Hong-qing. The solitary wave solutions for a class of nonlinear wave equations[J]. Acta Physica Sinica,1997,46(7): 1254-1258.(in Chinese))
    [9] Barbu L, Morosanu G. Singularly Perturbed Boundary-Value Problems [M]. Basel: Birkhauserm Verlag AG, 2007.
    [10] Barbu L, Cosma E. Elliptic regularizations for the nonlinear heat equation[J]. Journal of Mathematical Analysis & Applications,2009, 351(1): 392-399.
    [11] D’Aprile T, Pistoia A. On the existence of some new positive interior spike solutions to a semilinear Neumann problem[J]. Journal of Differential Equations,2010,248(3): 556-573.
    [12] Suzuki R. Asymptotic behavior of solutions of a semilinear heat equation with localized reaction[J]. Advances in Differential Equations,2010,15(3/4): 283-314.
    [13] Ei S I, Matsuzawa H. The motion of a transition layer for a bistable reaction diffusion equation with heterogeneous environment[J]. Discrete &Continuous Dynamical Systems,2009,26(3): 901-921.
    [14] Kellogg R B, Kopteva N. A singularly perturbed semilinear reaction-diffusion problem in a polygonal domain[J]. Journal of Differential Equations,2010,248(1): 184-208.
    [15] MO Jia-qi. Homotopic mapping solving method for gain fluency of a laser pulse amplifier[J]. Science in China, Series G: Physics, Mechanics & Astronomy,2009,52(7): 1007-1010.
    [16] MO Jia-qi, LIN Yi-hua, LIN Wan-tao. Homotopic mapping solving method of the reduces equation for Kelvin waves[J].Chinese Physics B,2010,19(3): 4-7.
    [17] MO Jia-qi. A singularly perturbed reaction diffusion problem for nonlinear boundary condition with two parameters[J].Chinese Physics B,2010,19(1): 13-16.
    [18] MO Jia-qi. Generalized variational iteration solution of soliton for disturbed KdV equation[J].Communications in Theoretical Physics,2010,53(3): 440-442.
    [19] MO Jia-qi, CHEN Xian-feng. Homotopic mapping method of solitary wave solutions for generalized complex Burgers equation[J]. Chinese Physics B,2010,19(10): 20-23.
    [20] 冯依虎, 石兰芳, 汪维刚, 莫嘉琪. 一类广义非线性强阻尼扰动发展方程的行波解[J]. 应用数学和力学, 2015,36(3): 315-324.(FENG Yi-hu, SHI Lan-fang, WANG Wei-gang, MO Jia-qi. Traveling wave solution for a class of generalized nonlinear strong-damp disturbed evolution equations[J]. Applied Mathematics and Mechanics,2015,36(3): 315-324.(in Chinese))
    [21] FENG Yi-hu, LIU Shu-de. Spike layer solutions of some quadratic singular perturbation problems with high-order turning points[J]. Mathematica Applicata,2014,27(1): 50-55.
    [22] SHI Juan-rong, LIN Wan-tao, MO Jia-qi. The singularly perturbed solution for a class of quasilinear nonlocal problem for higher order with two parameters[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis,2015,48(1): 85-91.
    [23] 汪维刚, 许永红, 石兰芳, 莫嘉琪. 一类双参数非线性高阶反应扩散方程的摄动解法[J]. 应用数学和力学, 2014,35(12): 1383-1391.(WANG Wei-gang, XU Yong-hong, SHI Lan-fang, MO Jia-qi. Perturbation method for a class of high-order nonlinear reaction diffusion equations with double parameters[J]. Applied Mathematics and Mechanics,2014,35(12): 1383-1391.(in Chinese))
    [24] 史娟荣, 石兰芳, 莫嘉琪. 一类非线性强阻尼扰动发展方程的解[J]. 应用数学和力学, 2014,35(9): 1046-1054.(SHI Juan-rong, SHI Lan-fang, MO Jia-qi. Solutions to a class of nonlinear strong-dump disturbed evolution equations[J]. Applied Mathematics and Mechanics,2014,35(9): 1046-1054.(in Chinese))
    [25] Liao S, Sherif S. Beyond Perturbation: Introduction to the Homotopy Analysis Method[M]. New York: CRC Press Co, 2004.
    [26] de Jager E M, JIANG Fu-ru. The Theory of Singular Perturbations [M]. Amsterdam: North-Holland Publishing Co, 1996.
  • 加载中
计量
  • 文章访问数:  1478
  • HTML全文浏览量:  175
  • PDF下载量:  933
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-25
  • 修回日期:  2015-06-04
  • 刊出日期:  2015-10-15

目录

    /

    返回文章
    返回