留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

关于向量优化问题的Δ函数标量化刻画的某些注记

唐莉萍 李飞 赵克全 杨新民

唐莉萍, 李飞, 赵克全, 杨新民. 关于向量优化问题的Δ函数标量化刻画的某些注记[J]. 应用数学和力学, 2015, 36(10): 1095-1106. doi: 10.3879/j.issn.1000-0887.2015.10.009
引用本文: 唐莉萍, 李飞, 赵克全, 杨新民. 关于向量优化问题的Δ函数标量化刻画的某些注记[J]. 应用数学和力学, 2015, 36(10): 1095-1106. doi: 10.3879/j.issn.1000-0887.2015.10.009
TANG Li-ping, LI Fei, ZHAO Ke-quan, YANG Xin-min. Some Notes on the Scalarization of Function Δ for Vector Optimization Problems[J]. Applied Mathematics and Mechanics, 2015, 36(10): 1095-1106. doi: 10.3879/j.issn.1000-0887.2015.10.009
Citation: TANG Li-ping, LI Fei, ZHAO Ke-quan, YANG Xin-min. Some Notes on the Scalarization of Function Δ for Vector Optimization Problems[J]. Applied Mathematics and Mechanics, 2015, 36(10): 1095-1106. doi: 10.3879/j.issn.1000-0887.2015.10.009

关于向量优化问题的Δ函数标量化刻画的某些注记

doi: 10.3879/j.issn.1000-0887.2015.10.009
基金项目: 国家自然科学基金(重点项目)(11431004);国家自然科学基金(面上项目)(11271391;11201511;11301574);重庆市科委项目(cstc2014pt-sy00001)
详细信息
    作者简介:

    唐莉萍(1985—),女,四川资中人,博士生(通讯作者. E-mail: tanglipings@163.com);李飞(1981—),男,内蒙古巴彦淖儿人,讲师,博士生(E-mail: lifeimath@163.com);赵克全(1979—),男,四川南充人,副教授,博士(E-mail: kequanz@163.com);杨新民(1960—),男,四川泸州人,教授,博士生导师(E-mail: xmyang@cqnu.edu.cn).

  • 中图分类号: O221.6

Some Notes on the Scalarization of Function Δ for Vector Optimization Problems

Funds: The National Natural Science Foundation of China(Key Program)(11431004);The National Natural Science Foundation of China(General Program)(11271391;11201511;11301574)
  • 摘要: 近期,夏远梅等(重庆师范大学(自然科学版),2015,32(1):12-15)利用Δ函数通过非线性标量化方法研究了向量优化问题的?-真有效解并举例说明了主要结果.笔者指出:其定理1是Gao等(Journal of Industrial and Management Optimization,2011,7(2): 483-496)建立的定理4.6(i)的特例;其定理2的证明存在不足.通过研究一般的(C,ε)-真有效解的Δ函数非线性标量化,给出了定理2的严谨证明.最后,在?-真有效解存在的情况下举例说明了主要结果.
  • [1] Kutateladze S S. Convex ε-programming[J].Soviet Mathematics Doklady,1979,20: 390-393.
    [2] 夏远梅, 张万里, 赵克全. ε-真有效解的非线性标量化[J]. 重庆师范大学学报(自然科学版), 2015,32(1): 12-15.(XIA Yuan-mei, ZHANG Wang-li, ZHAO Ke-quan. Nonlinear scalarization of ε-properly efficient solutions[J].Journal of Chongqing Normal University (Natural Science),2015,32(1): 12-15.(in Chinese))
    [3] RONG Wei-dong, MA Yi. Connectedness of ε-super efficient solution set of vector optimization problems with set-valued maps[J].Or Transactions,2000,4(4): 21-32.
    [4] Eichfelder G.Adaptive Scalarization Methods in Multiobjective Optimization [M]. Heidelberg, Berlin: Springer-Verlag, 2008.
    [5] Jahn J.Vector Optimization: Theory, Applications, and Extensions [M]. Berlin: Springer, 2011.
    [6] Soleimani-Damaneh M. An optimization modelling for string selection in molecular biology using Pareto optimality[J].Applied Mathematical Modelling,2011,35(8): 3887-3892.
    [7] Soleimani-Damaneh M. On some multiobjective optimization problems arising in biology[J].International Journal of Computer Mathematics,2011,88(6): 1103-1119.
    [8] Engau A, Wiecek M M. Generating ε-efficient solutions in multiobjective programming[J].European Journal of Operational Research,2007,177(3): 1566-1579.
    [9] Khoshkhabar-Amiranloo S, Soleimani-Damaneh M. Scalarization of set-valued optimization problems and variational inequalities in topological vector spaces[J].Nonlinear Analysis,2012,75(3): 1429-1440.
    [10] Son T Q, Strodiot J J, Nguyen V H. ε-optimality and ε-Lagrangian duality for a nonconvex programming problem with an infinite number of constraints[J].Journal of Optimization Theory and Applications,2009,141(2): 389-409.
    [11] Hiriart-Urruty J B. New concepts in nondifferentiable programming[J].Mémoires de la Société Mathématique de France,1979,60: 57-85.
    [12] Hiriart-Urruty J B. Tangent cones, generalized gradients and mathematical programming in Banach spaces[J].Mathematics of Operations Research,1979,4(1): 79-97.
    [13] Gerth C, Weidner P. Nonconvex separation theorems and some applications in vector optimization[J].Journal of Optimization Theory and Applications,1990,67(2): 297-320.
    [14] Gpfert A, Riahi H, Tammer C, Zalinescu C.Variational Methods in Partially Ordered Spaces [M]. New York: Springer-Verlag, 2003.
    [15] Zaffaroni A. Degrees of efficiency and degrees of minimality[J].SIAM Journal on Control and Optimization,2003,42(3): 1071-1086.
    [16] Loridan P. -solutions in vector minimization problems[J].Journal of Optimization Theory and Applications,1984,43(2): 265-276.
    [17] White D J. Epsilon effieiency[J].Journal of Optimization Theory and Applications,1986,49(2): 319-337.
    [18] Gutiérrez C, Jiménez B, Novo V. A unified approach and optimality conditions for approximate solutions of vector optimization problems[J].SIAM Journal on Optimization,2006,17(3): 688-710.
    [19] Helbig S, Pateva D. On several concepts for ε-efficiency[J].Operations Research Spektrum,1994,16(3): 179-186.
    [20] Gutiérrez C, Jiménez B, Novo V. Optimality conditions via scalarization for a new ε-efficiency concept in vector optimization problems[J].European Journal of Operational Research,2010,201(1): 11-22.
    [21] Ha T X D. The Ekeland variational principle for Henig proper minimizers and super minimizers[J].Journal of Mathematical Analysis and Applications,2010,364(1): 156-170.
    [22] Durea M, Dutta J, Tammer C. Lagrange multipliers for ε-Pareto solutions in vector optimization with nonsolid cones in Banach spaces[J].Journal of Optimization Theory and Applications,2010,145(1): 196-211.
    [23] Gao Y, Yang X M, Teo K L. Optimality conditions for approximate solutions of vector optimization problems[J].Journal of Industrial and Management Optimization,2011,7(2): 483-496.
  • 加载中
计量
  • 文章访问数:  1951
  • HTML全文浏览量:  209
  • PDF下载量:  922
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-14
  • 修回日期:  2015-08-13
  • 刊出日期:  2015-10-15

目录

    /

    返回文章
    返回