留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类具有非线性发生率的时滞传染病模型的全局稳定性

谢英超 程燕 贺天宇

谢英超, 程燕, 贺天宇. 一类具有非线性发生率的时滞传染病模型的全局稳定性[J]. 应用数学和力学, 2015, 36(10): 1107-1116. doi: 10.3879/j.issn.1000-0887.2015.10.010
引用本文: 谢英超, 程燕, 贺天宇. 一类具有非线性发生率的时滞传染病模型的全局稳定性[J]. 应用数学和力学, 2015, 36(10): 1107-1116. doi: 10.3879/j.issn.1000-0887.2015.10.010
XIE Ying-chao, CHENG Yan, HE Tian-yu. Global Stability of a Class of Delayed Epidemic Models With Nonlinear Incidence Rates[J]. Applied Mathematics and Mechanics, 2015, 36(10): 1107-1116. doi: 10.3879/j.issn.1000-0887.2015.10.010
Citation: XIE Ying-chao, CHENG Yan, HE Tian-yu. Global Stability of a Class of Delayed Epidemic Models With Nonlinear Incidence Rates[J]. Applied Mathematics and Mechanics, 2015, 36(10): 1107-1116. doi: 10.3879/j.issn.1000-0887.2015.10.010

一类具有非线性发生率的时滞传染病模型的全局稳定性

doi: 10.3879/j.issn.1000-0887.2015.10.010
基金项目: 国家自然科学基金(11202106);安徽省自然科学基金(1408085MA06)
详细信息
    作者简介:

    谢英超(1989—),男,湖南郴州人,硕士生(通讯作者. E-mail:xieyingchao104@163.com);程燕(1969—),女,安徽淮南人,副教授,博士,硕士生导师(E-mail:chengyan@hfuu.edu.cn);贺天宇(1984— ),男,辽宁盘锦人,讲师(E-mail:tianyu_he@126.com).

  • 中图分类号: O175.13

Global Stability of a Class of Delayed Epidemic Models With Nonlinear Incidence Rates

Funds: The National Natural Science Foundation of China(11202106)
  • 摘要: 充分考虑人口统计效应、疾病的潜伏期与传播规律的复杂性,研究了一类具有非线性发生率的时滞SIRS传染病模型的动力学行为.通过分析对应的线性化近似系统的特征方程,证明了无病平衡点的局部稳定性.利用Lyapunov-LaSalle不变集原理,当基本再生数R0<1时,证明了无病平衡点是全局渐近稳定的;当R0>1时,得到了地方病平衡点全局渐近稳定的充分条件.所得结论可为人们有效预防和控制传染病传播提供一定的理论依据.
  • [1] 温朝晖, 莫嘉琪. 一类流行性传染病生态模型的摄动解[J]. 武汉大学学报(理学版), 2011,57(2): 105-108.(WEN Zhao-hui, MO Jia-qi. Perturbed solution of a class of epidemic contagion ecological model[J]. Journal of Wuhan University (Natural Science Edition),2011,57(2): 105-108.(in Chinese))
    [2] 陈兰荪, 孟新柱, 焦建军. 生物动力学[M]. 北京: 科学出版社, 2009: 252-340.(CHEN Lan-sun, MENG Xin-zhu, JIAO Jian-jun. Biological Dynamics [M]. Beijing: Science Press, 2009: 252-340.(in Chinese))
    [3] RUAN Shi-gui, WANG Wen-di. Dynamical behavior of an epidemic model with a nonlinear incidence rate[J]. Journal of Differential Equations,2003,188(1): 135-163.
    [4] Oliveira R D S, Rezende A C. Global phase portraits of a SIS model[J]. Applied Mathematics and Computation,2013,219(9): 4924-4930.
    [5] GUO Li-na, PEI Yong-zhen, LIU Yuan. An infectious disease model with a time delay in loss of vaccine immunity and vertical transmission[J]. Journal of Biomathematics,2013,28(3): 385-389.
    [6] 刘玉英, 肖燕妮. 一类受媒体影响的传染病模型的研究[J]. 应用数学和力学, 2013,34(4): 399-407.(LIU Yu-yan, XIAO Yan-ni. An epidemic model with saturated media/psychological impact[J]. Applied Mathematics and Mechanics,2013,34(4): 399-407.(in Chinese))
    [7] 宫兆刚, 杨柳, 李浏兰. 具有常数输入率的SIRS传染病模型的稳定性分析[J]. 应用数学, 2013,26(3): 477-481.(GONG Zhao-gang, YANG Liu, LI Liu-lan. Global stability of an SIRS epidemic model with constant removal rate[J]. Mathematica Applicata,2013,26(3): 477-481.(in Chinese))
    [8] 王拉娣, 李建全. 一类带有非线性传染率的SEIS传染病模型的定性分析[J]. 应用数学和力学, 2006,27(5): 591-596.(WANG La-di, LI Jian-quan. Qualitative analysis of an SEIS epidemic model with nonlinear incidence rate[J]. Applied Mathematics and Mechanics,2006,27(5): 591-596.(in Chinese))
    [9] 杨洪, 魏俊杰. 一类带有非线性接触率的SIR传染病模型的稳定性[J]. 高校应用数学学报, 2014,29(1): 11-16.(YANG Hong, WEI Jun-jie. Stability of SIR epidemical model with a class of nonlinear incidence rates[J]. Applied Mathematics—A Journal of Chinese Universities,2014,29(1): 11-16.(in Chinese))
    [10] 杨亚莉, 李建全, 刘万萌, 唐三一. 一类具有分布时滞和非线性发生率的媒介传染病模型的全局稳定性[J]. 应用数学和力学, 2013,34(12): 1291-1299.(YANG Ya-li, LI Jian-quan, LIU Wan-meng, TANG San-yi. Global stability of a vector-borne epidemic model with distributed delay and nonlinear incidence[J]. Applied Mathematics and Mechanics,2013,34(12): 1291-1299.(in Chinese))
    [11] 周艳丽, 张卫国. 一类具有非单调传染率的SEIRS时滞传染病模型的全局稳定性[J]. 上海理工大学学报, 2014,36(2): 103-109.(ZHOU Yan-li, ZHANG Wei-guo. Global stability of a delayed SEIRS epidemic model with non-monotone incidence rate[J]. Journal of University of Shanghai for Science and Technology,2014,36(2): 103-109.(in Chinese))
    [12] HUANG Gang, Takeuchi Y, MA Wan-biao, WEI Dai-jun. Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate[J]. Bulletin of Mathematical Biology,2010,72(5): 1192-1207.
    [13] Enatsu Y, Nakata Y, Muroya Y. Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model[J]. Nonlinear Analysis: Real World Applications,2012,13(5): 2120-2133.
    [14] XU Rui, MA Zhi-en. Global stability of a delayed SEIRS epidemic model with saturation incidence rate[J]. Nonlinear Dynamics,2010,61(1): 229-239.
    [15] SONG Mei, LIU Guang-chen, GUO Hong-xia. The local asymptotic stability of an SIR epidemic model with nonlinear incidence rate and time delay[J]. Journal of Biomathematics,2011,26(2): 255-262.
    [16] 李鸣明, 刘贤宁, 吴凡. 一个具有非线性发生率的时滞SIR传染病模型的稳定性[J]. 西南大学学报(自然科学版), 2014,36(5): 61-66.(LI Ming-ming, LIU Xian-ning, WU Fan. The stability of a delayed SIR epidemic model with nonlinear incidence rate[J]. Journal of Southwest University(Natural Science Edition),2014,36(5): 61-66.(in Chinese))
    [17] MA Zhi-en, ZHOU Yi-cang, WU Jian-hong. Modeling and Dynamics of Infectious Diseases[M]. Beijing: Higher Education Press, 2009: 1-35, 289-314.
    [18] YANG Kuang. Delay Differential Equations With Applications in Population Dynamics [M]. San Diego: Academic Press, 1993.
  • 加载中
计量
  • 文章访问数:  1600
  • HTML全文浏览量:  129
  • PDF下载量:  806
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-27
  • 修回日期:  2015-05-21
  • 刊出日期:  2015-10-15

目录

    /

    返回文章
    返回