留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线性定常系统非齐次两点边值问题的扩展精细积分方法

谭述君 周文雅 吴志刚

谭述君, 周文雅, 吴志刚. 线性定常系统非齐次两点边值问题的扩展精细积分方法[J]. 应用数学和力学, 2015, 36(11): 1145-1157. doi: 10.3879/j.issn.1000-0887.2015.11.003
引用本文: 谭述君, 周文雅, 吴志刚. 线性定常系统非齐次两点边值问题的扩展精细积分方法[J]. 应用数学和力学, 2015, 36(11): 1145-1157. doi: 10.3879/j.issn.1000-0887.2015.11.003
TAN Shu-jun, ZHOU Wen-ya, WU Zhi-gang. An Extended Precise Integration Method for Solving Inhomogeneous Two-Point Boundary Value Problems of Linear Time-Invariant Systems[J]. Applied Mathematics and Mechanics, 2015, 36(11): 1145-1157. doi: 10.3879/j.issn.1000-0887.2015.11.003
Citation: TAN Shu-jun, ZHOU Wen-ya, WU Zhi-gang. An Extended Precise Integration Method for Solving Inhomogeneous Two-Point Boundary Value Problems of Linear Time-Invariant Systems[J]. Applied Mathematics and Mechanics, 2015, 36(11): 1145-1157. doi: 10.3879/j.issn.1000-0887.2015.11.003

线性定常系统非齐次两点边值问题的扩展精细积分方法

doi: 10.3879/j.issn.1000-0887.2015.11.003
基金项目: 国家自然科学基金(11002032;11372056;11432010);教育部博士点专项基金(20110041130001)
详细信息
    作者简介:

    谭述君(1979—),男,山东潍坊人,讲师,博士,硕士生导师(通讯作者. E-mail: tansj@dlut.edu.cn).

  • 中图分类号: O302

An Extended Precise Integration Method for Solving Inhomogeneous Two-Point Boundary Value Problems of Linear Time-Invariant Systems

Funds: The National Natural Science Foundation of China(11002032;11372056;11432010)
  • 摘要: 提出了一种求解非齐次线性两点边值问题的高精度和高稳定的扩展精细积分方法(EPIM).首先引入了区段量(即区段矩阵和区段向量)来离散非齐次线性微分方程,建立了非齐次两点边值问题基于区段量的求解框架.在该框架下,不同区段的区段量可以并行计算,整体代数方程组的集成不依赖于边界条件.然后引入区段响应矩阵来处理两点边值问题的非齐次项,导出了多项式函数、指数函数、正/余弦函数及其组合函数形式的非齐次项对应的区段响应矩阵的加法定理,结合增量存储技术提出了EPIM.对具有上述函数形式的非齐次项,该方法可以得到计算机上的精确解,一般形式的非齐次项则利用上述函数近似求解.最后通过两个具有刚性特征的数值算例验证了该方法的高精度和高稳定性.
  • [1] Frank-Kamenetskii D A. Diffusion and Heat Transfer in Chemical Kinetics [M]. New York: Plenum Press, 1969.
    [2] Bryson A E. Applied Linear Optimal Control: Examples and Algorithms [M]. Cambridge: Cambridge University Press, 2002.
    [3] Heath M T. Scientific Computing: an Introductory Survey [M]. 2nd ed. New York: McGraw-Hill, 2002.
    [4] Press W H, Teukolsky S A, Vetterling W T, Flannery B P. Numerical Recipes in C++ [M]. 2nd ed. Cambridge: Cambridge University Press, 2002.
    [5] Caglar H, Caglar N, Elfaituri K. B-spline interpolation compared with finite difference, finite element and finite volume methods which applied to two-point boundary value problems[J]. Applied Mathematics and Computation,2006,175(1): 72-79.
    [6] Jang B. Two-point boundary value problems by the extended adomian decomposition method[J]. Journal of Computational and Applied Mathematics,2008,219(1): 253-262.
    [7] Hoseini S M, Hoseini M, Orooji H. Numerical solution of two-point boundary value problem in linear differential equation[J]. Applied Mathematical Sciences,2009,3(30): 1493-1499.
    [8] Fauzi N, Sulaiman J. Half-sweep modified successive over relaxation method for solving second order two-point boundary value problems using cubic spline[J]. International Journal of Contemporary Mathematical Sciences,2012,7(32): 1579-1589.
    [9] ZHONG Wan-xie, Williams F W. A precise time step integration method[J]. Journal of Mechanical Engineering Science,1994,208(6): 427-430.
    [10] ZHONG Wan-xie. Combined method for the solution of asymmetric Riccati differential equations[J]. Computer Methods in Applied Mechanics and Engineering,2001,191(1/2): 93-102.
    [11] ZHONG Wan-xie. Duality System in Applied Mechanics and Optimal Control [M]. Boston: Kluwer Academic Publishers, 2004.
    [12] CHEN Biao-song, TONG Li-yong, GU Yuan-xian. Precise time integration for linear two-point boundary value problems[J]. Applied Mathematics and Computation,2006,175(1): 182-211.
    [13] 富明慧, 张文志, 薛申宁 S V. 求解奇异摄动边值问题的精细积分法[J]. 应用数学和力学, 2010,31(11): 1382-1392.(FU Ming-hui, ZHANG Wen-zhi, Sheshenin S V. Precise integration method for solving singular perturbation problems[J]. Applied Mathematics and Mechanics,2010,31(11): 1382-1392.(in Chinese))
    [14] ZHANG Wen-zhi, HUANG Pei-yan. Precise integration method for a class of singular two-point boundary value problems[J]. Acta Mechanica Sinica,2013,29(2): 233-240.
    [15] 谭述君. 精细积分方法的改进及其在动力学与控制中的应用[D]. 博士学位论文. 大连: 大连理工大学, 2009.(TAN Shu-jun. Improvement of precise integration method and its application in dynamics and control[D]. PhD Thesis. Dalian: Dalian University of Technology, 2009.(in Chinese))
    [16] 谭述君, 钟万勰. 非齐次动力方程Duhamel项的精细积分[J]. 力学学报, 2007,39(3): 374-381.(TAN Shu-jun, ZHONG Wan-xie. Precise integration method for Duhamel terms arising from non-homogenous dynamic systems[J]. Chinese Journal of Theoretical and Applied Mechanics,2007,39(3): 374-381.(in Chinese))
    [17] ZHONG Wan-xie. On precise integration method[J]. Journal of Computational and Applied Mathematics,2004,163(1): 59-78.
    [18] 谭述君, 吴志刚, 钟万勰. 矩阵指数精细积分方法中参数的自适应选择[J]. 力学学报, 2009,41(6): 961-966.(TAN Shu-jun, WU Zhi-gang, ZHONG Wan-xie. Adaptive selection of parameters for precise computation of matrix exponential based on Padé approximation[J]. Chinese Journal of Theoretical and Applied Mechanics,2009,41(6): 961-966.(in Chinese))
    [19] Moler C, Loan C V. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later[J]. SIAM Review,2003,45(1): 3-49.
    [20] Ravi K A S V, Reddy Y N. A numerical method for solving two-point boundary value problems over infinite intervals[J]. Applied Mathematics and Computation,2003,144(2/3): 483-494.
  • 加载中
计量
  • 文章访问数:  1578
  • HTML全文浏览量:  119
  • PDF下载量:  713
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-16
  • 修回日期:  2015-10-08
  • 刊出日期:  2015-11-15

目录

    /

    返回文章
    返回