留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

解分数阶微分代数系统的Adomian分解方法

冯再勇 陈宁

冯再勇, 陈宁. 解分数阶微分代数系统的Adomian分解方法[J]. 应用数学和力学, 2015, 36(11): 1211-1218. doi: 10.3879/j.issn.1000-0887.2015.11.009
引用本文: 冯再勇, 陈宁. 解分数阶微分代数系统的Adomian分解方法[J]. 应用数学和力学, 2015, 36(11): 1211-1218. doi: 10.3879/j.issn.1000-0887.2015.11.009
FENG Zai-yong, CHEN Ning. On the Solution of Fractional Differential-Algebraic Systems With the Adomian Decomposition Method[J]. Applied Mathematics and Mechanics, 2015, 36(11): 1211-1218. doi: 10.3879/j.issn.1000-0887.2015.11.009
Citation: FENG Zai-yong, CHEN Ning. On the Solution of Fractional Differential-Algebraic Systems With the Adomian Decomposition Method[J]. Applied Mathematics and Mechanics, 2015, 36(11): 1211-1218. doi: 10.3879/j.issn.1000-0887.2015.11.009

解分数阶微分代数系统的Adomian分解方法

doi: 10.3879/j.issn.1000-0887.2015.11.009
基金项目: 国家自然科学基金(11272159)
详细信息
    作者简介:

    冯再勇(1982—),男, 南京人,讲师,博士生(E-mail: 77403497@qq.com);陈宁(1968—),男,江苏宜兴人,教授,博士,博士生导师(通讯作者.E-mail: chenning@njfu.com.cn).

  • 中图分类号: O155; O29

On the Solution of Fractional Differential-Algebraic Systems With the Adomian Decomposition Method

Funds: The National Natural Science Foundation of China(11272159)
  • 摘要: 研究了利用Adomian分解求解分数阶微分代数系统的方法.分析了代数约束对Adomian方法求解的影响,指出直接解出代数约束变量,将原系统转化为微分系统进行Adomian分解的困难.提出确定代数变量级数解各分量的新方法,据此进行Adomian分解,得到整个系统的级数解.特别研究了代数约束为线性的分数阶微分代数系统的Adomian解法,证明了各变量间的线性代数约束关系可以转化为相应级数解中各分量的线性关系,从而方便求解,并结合具体例子证明了该方法简便有效.
  • [1] Zurigat M, Momani S. Analytical approximate solutions of systems of fractional algebraic-differential equations by homotopy analysis method[J].Computers & Mathematics With Applications,2010,59(3): 1227-1235.
    [2] DING Xiao-li, JIANG Yao-lin. Waveform relaxation method for fractional differential-algebraic equations[J].Fractional Calculus &Applied Analysis,2014,17(3): 585-604.
    [3] Adomian G, Rach R. Inversion of nonlinear stochastic operators[J].Journal of Mathematical Analysis and Applications, 1983,91(1): 39-46.
    [4] Adomian G. Stochastic Systems [M]. New York: Academic Press, 1983.
    [5] Bellman R E, Adomian G.Partial Differential Equations: New Methods for Their Treatment and Solution[M]. Dordrecht: D Reidel Publishing Company, 1985.
    [6] Adomian G.Nonlinear Stochastic Operator Equations [M]. San Diego: Academic Press, 1986.
    [7] Bellomo N, Riganti R.Nonlinear Stochastic Systems Analysis in Physics and Mechanics [M]. Singapore: World Scientific Publishing Company, 1987.
    [8] Adomian G.Nonlinear Stochastic Systems Theory and Applications to Physics [M]. Dordrecht: Kluwer Academic, 1989.
    [9] Arora H L, Abdelwahid F I. Solution of non-integer order differential equations via the Adomian decomposition method[J].Applied Mathematics Letters,1993,6(1): 21-23.
    [10] George A J, Chakrabarti A. The Adomian method applied to some extraordinary differential equations[J].Applied Mathematics Letters, 1995,8(3): 391-397.
    [11] Shawagfeh N T. Analytical approximate solutions for nonlinear fractional differential equations[J].Applied Mathematics and Computation,2002,131(2): 517-529.
    [12] Daftardar-Gejji V, Jafari H. Adomian decomposition: a tool for solving a system of fractional differential equations[J].Journal of Mathematical Analysis and Applications,2005,301(2): 508-518.
    [13] Jafari H, Daftardar-Gejji V. Solving a system of nonlinear fractional differential equations using Adomian decomposition[J].Journal of Computational & Applied Mathematics, 2006,196(2): 644-651.
    [14] LI Chang-pin, WANG Yi-hong. Numerical algorithm based on Adomian decomposition for fractional differential equations[J].Computers & Mathematics With Applications,2009,57(10): 1672-1681.
    [15] Duan J S. Recurrence triangle for Adomian polynomials[J].Applied Mathematics and Computation,2010,216(4): 1235-1241.
    [16] Duan J S, Rach R, Wang Z. On the effective region of convergence of the decomposition series solution[J].Journal of Algorithms & Computational Technology,2013,2: 227-248.
  • 加载中
计量
  • 文章访问数:  1640
  • HTML全文浏览量:  145
  • PDF下载量:  714
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-14
  • 修回日期:  2015-07-17
  • 刊出日期:  2015-11-15

目录

    /

    返回文章
    返回