留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时变系统流场动量定理的积分形式及其在流体动力系数分析中的应用

林献武 兰维瑶 李智斌 李赫

林献武, 兰维瑶, 李智斌, 李赫. 时变系统流场动量定理的积分形式及其在流体动力系数分析中的应用[J]. 应用数学和力学, 2016, 37(6): 551-566. doi: 10.3879/j.issn.1000-0887.2016.06.001
引用本文: 林献武, 兰维瑶, 李智斌, 李赫. 时变系统流场动量定理的积分形式及其在流体动力系数分析中的应用[J]. 应用数学和力学, 2016, 37(6): 551-566. doi: 10.3879/j.issn.1000-0887.2016.06.001
LIN Xian-wu, LAN Wei-yao, LI Zhi-bin, LI He. The Integral Form Fluid Momentum Theorem on Time-Varying Systems and Its Application to Aerodynamic Force Coefficient Analysis[J]. Applied Mathematics and Mechanics, 2016, 37(6): 551-566. doi: 10.3879/j.issn.1000-0887.2016.06.001
Citation: LIN Xian-wu, LAN Wei-yao, LI Zhi-bin, LI He. The Integral Form Fluid Momentum Theorem on Time-Varying Systems and Its Application to Aerodynamic Force Coefficient Analysis[J]. Applied Mathematics and Mechanics, 2016, 37(6): 551-566. doi: 10.3879/j.issn.1000-0887.2016.06.001

时变系统流场动量定理的积分形式及其在流体动力系数分析中的应用

doi: 10.3879/j.issn.1000-0887.2016.06.001
基金项目: 国家自然科学基金(11072028;61273199);福建省自然科学基金(2016J01030);中央高校基本科研业务费专项资金(20720150177)
详细信息
    作者简介:

    林献武(1975—),男,博士(通讯作者. E-mail: linxianw@xmu.edu.cn).

  • 中图分类号: O357.4+1

The Integral Form Fluid Momentum Theorem on Time-Varying Systems and Its Application to Aerodynamic Force Coefficient Analysis

Funds: The National Natural Science Foundation of China(11072028;61273199)
  • 摘要: 为解决飞艇的非定常流体动力系数的计算问题,利用准平衡假设在涡量流体动力学理论的基础上构建了一种流体动力系数计算方法.首先提出了时变系统的概念及其与流场空间区域的对应关系,在此基础上建立了时变系统的输运方程和流场动量定理积分形式为后面的讨论做准备.其次,将动量定理应用于一个由无穷远固定边界和物面所包含的流体系统,将流体动力表征为流场扰动动量总和变化率的函数.进而提出准平衡假设的概念,将有粘流中流场扰动速度、第一涡量矩和扰动动量表示为运动体速度和角速度的函数.最后,采用CFD技术,数值确定了这种关系并代入流体动力表达式,得到有粘流中流体动力系数的计算方法.研究结果还表明,由于考虑了系统的时变性,在得到的流体动力表达式中将多出一个稳态流体动力项.这个稳态流体动力项,在无粘流的情况下刚好等于零,与d’Alembert(达朗伯)佯谬的结论一致,在有粘流的情况下不等于零,与实际情况一致.
  • [1] Lamb H. Hydrodynamics[M]. 6th ed. New York: Dover, 1945.
    [2] Tuckerman L B. Inertia factors of ellipsoids for use in airship design[R]. Technical Report Archive and Image Library, 1926.
    [3] Erdelyi,A.,Higher Trascendental Functions,Vol,Ⅰ-Ⅲ(1953).
    [4] Allen H J, Perkins E W. A study of effects of viscosity on flow over slender inclined bodies of revolution[R]. Technical Report Archive and Image Library, 1951.
    [5] Hopkins E J. A semi-empirical method for calculating the pitching moment of bodies of revolution at low Mach numbers[R]. Technical Report Archive and Image Library, 1951.
    [6] Jones S P, deLaurier J D. Aerodynamic estimation techniques for aerostats and airships[J]. Journal of Aircraft,1983,20(2): 120-126.
    [7] Khoury G A, Gillett J D. Airship Technology[M]. New York: Cambridge University Press, 1999.
    [8] Mueller J B, Paluszek M A, Zhao Y Y. Development of an aerodynamic model and control law design for a high altitude airship[C]//AIAA 〖STBX〗3rd “Unmanned Unlimited” Technical Conference, Workshop and Exhibit.Chicago, Illinois, 2004: 1-17.
    [9] Li Y W, Nahon M. Modeling and simulation of airship dynamics[J]. Journal of Guidance Control and Dynamics,2012,30(6): 1691-1700.
    [10] Li Y W, Nahon M, Sharf I. Airship dynamics modeling: a literature review[J]. Progress in Aerospace Sciences,2011,47(3): 217-239.
    [11] 基里林〖KG-*4〗·〖KG-*4〗阿列克桑德拉〖KG-*4〗·〖KG-*4〗尼卡拉伊维奇. 现代飞艇设计导论[M]. 吴飞, 王培美, 译. 北京: 国防工业出版社, 2009.(Kirilin A K. Introduction to Modern Airship Design[M]. WU Fei, WANG Pei-mei, transl. Beijing: National Defend Industry Press, 2009.(Chinese version))
    [12] Sebbane Y B. Lighter Than Air Robots[M]. Springer, 2012.
    [13] Wu J C. Theory for aerodynamic force and moment in viscous flows[J]. AIAA Journal,1981,19(4): 432-441.
    [14] Wu J C. Elements of Vorticity Aerodynamics[M]. Shanghai: Shanghai Jiao Tong University Press, 2014.
    [15] 童秉纲, 尹协远, 朱克勤. 涡运动理论[M]. 合肥: 中国科学技术大学出版社, 2009.(TONG Bing-gang, YIN Xie-yuan, ZHU Ke-qin. Vortex Motion Theory[M]. Hefei: University of Science and Technology of China Press, 2009.(in Chinese))
    [16] WU Jie-zhi, MA Hi-yang, ZHOU Ming-de. Vortical Flows[M]. Springer, 2007.
    [17] Noca F, Shiels D, Jeon D. A comparison of methods for evaluating time-dependent fluid dynamic forces on bodies, using only velocity fields and their derivatives[J]. Journal of Fluids and Structures,1999,13(5): 551-578.
    [18] 吴子牛, 王兵, 周睿, 徐珊姝. 空气动力学(下册)[M]. 北京: 清华大学出版社, 2008.(WU Zi-niu,WANG Bing, ZHOU Rui, XU Shan-shu. Aerodynamics(Volume Two)[M]. Beijing: Tsinghua University Press, 2008.(in Chinese))
    [19] Wu J Z, Ma H Y, Zhou M D. Vorticity and Vortex Dynamics[M]. Springer, 2006.
    [20] 清华大学工程力学系. 流体力学基础[M]. 北京: 机械工业出版社, 1980.(Department of Engineering Mechanics of Tsinghua University. The Basis of Fluid Dynamics[M]. Beijing: China Machine Press, 1980.(in Chinese))
    [21] Noca F. On the evaluation of time-dependent fluid-dynamic forces on bluff bodies[D]. PhD Thesis. Pasadena: California Institute of Technology, 1997.
    [22] Leal L G. Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes[M]. New York: Cambridge University Press, 2007.
    [23] Katz J, Plotkin A. Low-Speed Aerodynamics[M]. New York: Cambridge University Press, 2001.
    [24] 易中, 吴萱, 周丽珍. 低速空气动力学[M]. 北京: 冶金工业出版社, 2005.(YI Zhong, WU Xuan, ZHOU Li-zhen. Low-Speed Aerodynamic[M]. Beijing: Metallurgical Industry Press, 2005.(in Chinese))
    [25] 徐明友, 丁松滨. 飞行动力学[M]. 北京: 科学出版, 2003.(XU Ming-you, DING Song-bin. Flight Dynamics[M]. Beijing: Science Press, 2003.(in Chinese))
    [26] Prandtl L, Tietjens Q G. Fundamentals of Hydro- and Aeromechanics[M]. New York: Dover Publications, 1957.
    [27] Anderson J D. Fundamentals of Aerodynamics[M]. Boston: McGraw-Hill Higher Education, 2001: 112-114.
    [28] Batchelor G K. An Introduction to Fluid Dynamics[M]. Beijing: China Machine Press, 2004.
  • 加载中
计量
  • 文章访问数:  1357
  • HTML全文浏览量:  58
  • PDF下载量:  1006
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-27
  • 修回日期:  2016-04-15
  • 刊出日期:  2016-06-15

目录

    /

    返回文章
    返回