留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

饱和多孔介质的超粘弹性本构理论研究

胡亚元

胡亚元. 饱和多孔介质的超粘弹性本构理论研究[J]. 应用数学和力学, 2016, 37(6): 584-598. doi: 10.3879/j.issn.1000-0887.2016.06.004
引用本文: 胡亚元. 饱和多孔介质的超粘弹性本构理论研究[J]. 应用数学和力学, 2016, 37(6): 584-598. doi: 10.3879/j.issn.1000-0887.2016.06.004
HU Ya-yuan. Study on the Super Viscoelastic Constitutive Theory for Saturated Porous Media[J]. Applied Mathematics and Mechanics, 2016, 37(6): 584-598. doi: 10.3879/j.issn.1000-0887.2016.06.004
Citation: HU Ya-yuan. Study on the Super Viscoelastic Constitutive Theory for Saturated Porous Media[J]. Applied Mathematics and Mechanics, 2016, 37(6): 584-598. doi: 10.3879/j.issn.1000-0887.2016.06.004

饱和多孔介质的超粘弹性本构理论研究

doi: 10.3879/j.issn.1000-0887.2016.06.004
基金项目: 国家自然科学基金(51178419)
详细信息
    作者简介:

    胡亚元(1968—),男,副教授,博士(Email: huyayuan@zju.edu.cn).

  • 中图分类号: TU43

Study on the Super Viscoelastic Constitutive Theory for Saturated Porous Media

Funds: The National Natural Science Foundation of China(51178419)
  • 摘要: 为了建立能考虑固体材料、多孔固体与流体可逆和不可逆变形的饱和多孔介质超粘弹性理论,以多孔固相为参考构型,以有效应力、材料真实应力和流相真实孔压作为状态变量,结合混合物均匀化响应原理获得各项均符合热力学功共轭特征的饱和多孔介质能量平衡方程,根据非平衡热力学熵分解理论求得熵流和熵产.结果表明,超弹塑性理论是该理论的一个特例;多孔固体的总变形可分为固相间隙和材料变形两部分,间隙应变与Terzaghi有效应力构成功共轭对,材料应变与材料真实应力构成功共轭对.饱和多孔介质的自由能可分为固相和流相两部分.当固相间隙和材料变形解耦时,固相所含的自由能又可分为间隙和材料两部分.证明了Skempton 有效应力不是饱和多孔介质的基本应力状态变量.
  • [1] Boit M A. Theory of elasticity and consolidation for a porous anisotropic solid[J].Journal of Applied Physics,1955,26(2): 182-185.
    [2] Geertsma J. The effect of fluid pressure decline on volumetric changes of porous rocks[J].Society of Petroleum Transactions,1957,210: 331-339.
    [3] Skempton A W.Effective Stress in Soils, Concrete and Rocks [M]. London, UK: Butterwoths, 1961: 4-16.
    [4] 李传亮, 孔祥言, 徐献芝, 李培超. 多孔介质的双重有效应力[J]. 自然杂志, 1999,21(5): 288-291.(LI Chuan-liang, KONG Xiang-yan, XU Xian-zhi, LI Pei-chao. Double effective stresses of porous media[J].Ziran Zazhi,1999,21(5): 288-291.(in Chinese))
    [5] Fillunger P. Der Kapillardruck in Talperren[J].Die Wasserwirtschaft,1934,27(13/14): 129-131.
    [6] Heinrich V G, Desoyer K. Theorie dreidimensionaler Setzungsvorgnge in Tonschichten[J].Ingenieur-Archiv,1961,30: 225-253.
    [7] Bowen R M. 混合物理论[M]. 徐慧已, 张志新, 李如庆, 王清泉, 金和, 译. 南京: 江苏科学技术出版社, 1983: 1-48.(Bowen R M.Theory of Mixtures [M]. XU Hui-yi, ZHANG Zhi-xin, LI Ru-qing, WANG Qing-quan, JIN He, transl. Nanjing: Jiangsu Science and Technology Press, 1983: 1-48.(Chinese version))
    [8] 陈正汉. 岩土力学的公理化理论体系[J]. 应用数学和力学, 1994,15(10): 901-910.(CHEN Zheng-han. An axiomatic of geomechanics[J].Applied Mathematics and Mechanics,1994,15(10): 901-910.(in Chinese))
    [9] Morland L W. A simple constitutive theory for a fluid-saturated porous solid[J].Journal of Geophysical Research,1972,77(5): 890-900.
    [10] de Boer R. Highlights in the historical development of the porous media theory: toward a consistent macroscopic theory[J].Applied Mechanics Reviews,1996,49(4): 201-262.
    [11] Coussy O, Dormieux L, Detournay E. From mixture theory to Biot’s approach for porous media[J].International Journal of Solids and Structures, 1998,35(34/35): 4619-4635.
    [12] 黄义, 张引科. 非饱和土本构关系的混合物理论(Ⅰ)——非线性本构方程和场方程[J]. 应用数学和力学, 2003,24(2): 111-123.(HUANG Yi, ZHANG Yin-ke. Constitutive relation of unsaturated soil by use of the mixtrue theory(Ⅰ)—nonlinear constitutive equations and field equations[J].Applied Mathematics and Mechanics,2003,24(2): 111-123.(in Chinese))
    [13] Houlsby G T. The work input to a granular material[J].Géotechnique,1979,29(3): 354-358.
    [14] Houlsby G T. The work input to an unsaturated granular material[J].Géotechnique,1997,47(1): 193-196.
    [15] Li X S. Thermodynamics-based constitutive framework for unsaturated soils—1: theory[J].Géotechnique,2007,57(5): 411-422.
    [16] Borja R I. On the mechanical energy and effective stress in saturated and unsaturated porous continua[J].International Journal of Solids and Structures,2006,43: 1764-1786.
    [17] Zhao C G, Liu Y, Gao F P. Work and energy equations and the principle of generalized effective stress for unsaturated soils[J].International Journal for Numerical and Analytical Method in Geomechanics,2010,34(9): 881-990.
    [18] 刘雪梅, 邓子辰, 胡伟鹏. 不可压饱和多孔弹性杆动力响应的多辛方法[J]. 应用数学和力学, 2015,36(3): 242-251.(LIU Xue-mei, DENG Zi-chen, HU Wei-peng. A multi-symplectic method for dynamic responses of incompressible saturated poroelastic rods[J].Applied Mathematics and Mechanics,2015,36(3): 242-251.(in Chinese))
    [19] 庞国飞, 陈文, 张晓棣, 孙洪广. 复杂介质中扩散和耗散行为的分数阶导数唯象建模[J]. 应用数学和力学, 2015,36(11): 1117-1134.(PANG Guo-fei, CHEN Wen, ZHANG Xiao-di, SUN Hong-guang. Fractional differential phenomenological modeling for diffusion and dissipation behaviors of complex medium[J].Applied Mathematics and Mechanics,2015,36(11): 1117-1134.(in Chinese))
    [20] Geertsma J, Smit D C. Some aspects of elastic wave propagation in fluid-saturated porous solid[J].Geophysics,1961,26(2): 169-181.
    [21] Berrman J G. Confirmation of Biot’s theory[J].Applied Physics Letters,1980,37(4): id382. doi: 10.1063/1.91951.
    [22] Philippacopoulos A J. Lamb’s problem for fluid-saturated, porous media[J].Bulletin of the Seismological Society of America,1988,78(2): 908-923.
    [23] Chen J. Time domain fundamental solution to Biot’s complete equations of dynamic poroelasticity[J].Internal Journal of Solids and Structures,1994,31(2): 169-202.
    [24] 李如生. 非平衡态热力学和耗散结构[M]. 北京: 清华大学出版社, 1986: 76-106.(LI Ru-sheng.Nonequilibrium Thermodynamics and Dissipative[M]. Beijing: Tsinghua Press, 1986: 76-106.(in Chinese))
    [25] Ziegler H.An Introduction to Thermomechanics[M]. 2nd ed. North-Holland: Amsterdam, 1983.
    [26] Collins I F, Houlsby G T. Application of thermomechanical principles to the modelling of geotechnical materials[J].Proceedings of the Royal Society A,1997,453(1964): 1975-2001.
    [27] Hill R.The Mathematical Theory of Plasticity[M]. Oxford, 1950: 50-52.
  • 加载中
计量
  • 文章访问数:  878
  • HTML全文浏览量:  76
  • PDF下载量:  711
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-24
  • 修回日期:  2016-02-23
  • 刊出日期:  2016-06-15

目录

    /

    返回文章
    返回