Abstract:
The present paper concerns with the effect of thermophoretic particle deposition on the transient natural convection laminar flow along a vertical flat surface which was immersed in an optically dense gray fluid in the presence of thermal radiation. In the analysis the radiative heat flux term was expressed by adopting the Rosseland diffusion approximation. The governing equations were reduced to a set of parabolic partial differential equations which were then solved numerically with a finite difference scheme in the entire time regime,0 ≤τ < ∞.Asymptotic solutions were also obtained for sufficiently small and large times. Excellent agreement was found between the asymptotic and the numerical solutions. Moreover, the effects of different physical parameters, namely the thermal radiation parameter Rd,the surface temperature parameter θw, and the thermophoretic parameter λ,on the transient surface shear stress τw,the rate of surface heat transfer qw, and the rate of species concentration mw as well as on the transient velocity, temperature and concentration profiles were shown graphically for a fluid as air for which the Prandtl number Pr is 0.7 at 20℃ and 1 atm pressure.