2016, 37(9): 924-935.
doi: 10.21656/1000-0887.360238
Abstract:
The traditional vibration isolation methods were often aimed at the suppression of the power equipment vibration only, but the vibration participation of the simplified rigid foundation was usually ignored in practice. The ‘power equipment-isolator-thin plate’ combination was considered as a composite vibration isolation system where the equipment was 4-point installed, and the transmitted forces from the equipment to the plate foundation were derived according to the mechanical 4-pole connection properties. In turn, the multi-objective optimization was performed in which the minimum power flow transmitted to the plate and the uniform vibration of the power equipment were defined as the fitness functions, and the purpose of the latter one was to sustain normal work and service life of the equipment. The multi-objective particle swarm optimization (MOPSO) algorithm was selected as the optimization tool in view of the advantages of less parameter settings, fast convergence, strong optimization capability and unique global optimal solution based on the Pareto dominance. This study combined together the power equipment vibration isolation, the thin plate vibration, the power flow transmission and the intelligent multi-objective optimization; in addition, a latest vibration theory for clamped plates aptly supported this strategy. The application of the MOPSO promotes the traditional view of vibration isolation and control.