XU Xiao-qin, CHEN Shu-mei. Heat and Mass Transfer in the Casson Nanofluid Flow Over a Stretching Cylinder in Cylindrical Coordinates[J]. Applied Mathematics and Mechanics, 2016, 37(9): 969-980. doi: 10.21656/1000-0887.370091
Citation: XU Xiao-qin, CHEN Shu-mei. Heat and Mass Transfer in the Casson Nanofluid Flow Over a Stretching Cylinder in Cylindrical Coordinates[J]. Applied Mathematics and Mechanics, 2016, 37(9): 969-980. doi: 10.21656/1000-0887.370091

Heat and Mass Transfer in the Casson Nanofluid Flow Over a Stretching Cylinder in Cylindrical Coordinates

doi: 10.21656/1000-0887.370091
  • Received Date: 2016-03-29
  • Rev Recd Date: 2016-05-31
  • Publish Date: 2016-09-15
  • For the first time the cylindrical coordinates were employed to study the heat and mass transfer in the steady laminar Casson nanofluid flow over a stretching cylinder in view of velocity slip and convective surface boundary conditions. The governing partial differential equations (PDEs) were transformed into highly nonlinear coupled ordinary differential equations (ODEs) via appropriate similarity transformations and then solved numerically with the shooting method. The effects of different physical parameters on velocity profiles, temperature and concentration distributions were presented graphically and analyzed in detail. The results show that the velocity is strongly influenced by the slip parameter, while the temperature and the concentration are sensitive to the Biot number and the Lewis number respectively. An increase in the Casson parameter will decelerate the flow but elevate the temperature and the concentration. Increasing the Brownian motion parameter or the thermophoresis parameter will raise the temperature. A larger concentration will come with a lower Brownian motion parameter or a higher thermophoresis parameter. The back flow exists in the concentration profile for relatively large values of the thermophoresis parameter.
  • loading
  • [1]
    Bég O A, Malleque K A, Islam M N. Modelling of Ostwald-de Waele non-Newtonian flow over a rotating disk in a non-Darcian porous medium[J]. International Journal of Applied Mathematics and Mechanics,2012,8(13): 46-67.
    [2]
    T·哈亚特, S·A·谢赫扎德, A·阿尔舍德. Casson流体作磁流体动力学流动时的Soret和Dufour效应[J]. 应用数学和力学, 2012,33(10): 1211-1221.(Hayat T, Shehzad S A, Alsaedi A. Soret and Dufour effects in the magnetohydrodynamic(MHD) flow of Casson fluid[J]. Applied Mathematics and Mechanics,2012,33(10): 1211-1221.(in Chinese))
    [3]
    Bég O A, Makinde O D. Viscoelastic flow and species transfer in a Darcian high-perme-ability channel[J]. Journal of Petroleum Science and Engineering,2011,76(3/4): 93-99.
    [4]
    Mohiddin S G, Prasad V R, Varma S V K, Bég O A. Numerical study of unsteady free convective heat and mass transfer in a Walters-B viscoelastic flow along a vertical cone[J]. International Journal of Applied Mathematics and Mechanics,2010,6(15): 88-114.
    [5]
    Prasad V R, Vasu B, Bég O A, Parshad R D. Unsteady free convection heat and mass transfer in a Walters-B viscoelastic flow past a semi-infinite vertical plate: a numerical study[J]. Thermal Sciences, 2011,15(2): 291-305.
    [6]
    Bég O A, Takhar H S, Bharagava R, Rawat S, Prasad V R. Numerical study of heat transfer of a third grade viscoelastic fluid in non-Darcian porous media with thermophysical effects[J]. Physica Scripta, 2008,77(6): 065402.
    [7]
    Rashidi M M, Rastegari M T, Asadi M, Bég O A. A study of non-Newtonian flow and heat transfer over a non-isothermal wedge using the homotopy analysis method[J]. Chemical Engineering Communications, 2012,199(2): 231-256.
    [8]
    Huilgol R R, You Z. Application of the augmented Lagrangian method to steady pipe flows of Bingham, Casson and Herschel-Bulkley fluids[J]. Journal of Non-Newtonian Fluid Mechanics,2005,128(2/3): 126-143.
    [9]
    Bird R B, Dai G C, Yarusso B J. The rheology and flow of viscoplastic materials[J]. Reviews in Chemical Engineering,1983,1(1): 36-69.
    [10]
    Nagarani P, Sarojamma G, Jayaraman G. Effect of boundary absorption on dispersion in Casson fluid flow in an annulus: application to catheterized artery[J]. Acta Mechanica,2009,202(1/4): 47-63.
    [11]
    Mustafa M, Hayat T, Loan P, Hendi A. Stagnation-point flow and heat transfer of a Casson fluid towards a stretching sheet[J]. Zeitschrift für Naturforschung A, 2012,67(1/2): 70-76.
    [12]
    Choi S U S, Eastman J A. Enhancing thermal conductivity of fluids with nanoparticles[J].Materials Science,1995,231: 99-105.
    [13]
    Malvandi A, Ganji D D. Effects of nanoparticle migration on force convection of alumina/water nanofluid in a cooled parallel-plate channel[J]. Advanced Powder Technology,2014,25(4): 1369-1375.
    [14]
    Makinde O D, Khan W A, Khan Z H. Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet [J].International Journal of Heat and Mass Transfer,2013,62(1): 526-533.
    [15]
    Hatami M, Ganji D D. Heat transfer and flow analysis for SA-TiO2 non-Newtonian nanofluid passing through the porous media between two coaxial cylinders[J]. Journal of Molecular Liquids,2013,188: 155-161.
    [16]
    Crane L J. Flow past a stretching plate[J]. Zeitschrift für angewandte Mathematik und Physik Zamp,1970,21(4): 645-647.
    [17]
    Bachok N, Ishak A, Pop I. Boundary-layer flow of nanofluids over a moving surface in a flowing fluid[J]. International Journal of Thermal Sciences,2010,49 (9) : 1663-1668.
    [18]
    Rashidi M M, Freidoonimehr N, Hosseini A, Bég O A, Hung T K. Homotopy simulation of nanofluid dynamics from a non-linearly stretching isothermal permeable sheet with transpiration[J]. European Journal of Nuclear Medicine,2014,26(4): 410-415.
    [19]
    Wang C Y. Fluid flow due to a stretching cylinder[J]. Physics of Fluids,1988,31(3): 466-468.
    [20]
    Ishak A, Nazar R, Pop I. Uniform suction/blowing effect on flow and heat transfer due to a stretching cylinder[J]. Applied Mathematical Modelling,2008,32(10): 2059-2066.
    [21]
    Ishak A, Nazar R, Pop I. Magnetohydrodynamic(MHD) flow and heat transfer due to a stretching cylinder[J]. Energy Conversion and Management,2008,49(11): 3265-3269.
    [22]
    Abbas Z, Majeed A, Javed T. Thermal radiation effects on MHD flow over a stretching cylinder in a porous medium[J]. Heat Transfer Research,2013,44(8): 703-718.
    [23]
    Hayat T, Asad S, Alsaedi A. Flow of variable thermal conductivity fluid due to inclined stretching cylinder with viscous dissipation and thermal radiation[J]. Applied Mathematics and Mechanics(English Edition),2014,35(6): 717-728.
    [24]
    Bachok N, Ishak A. Flow and heat transfer over a stretching cylinder with prescribed surface heat flux[J]. Malaysian Journal of Mathematical Sciences,2010,4(2): 159-169.
    [25]
    Mahdy A. Heattransfer and flow of a Casson fluid due to a stretching cylinder with the Soret and Dufour effects[J]. Journal of Engineering Physics and Thermophysics,2015,88(4): 1-9.
    [26]
    Rao A S, Prasad V R, Reddy N B, Bég O A. Heat transfer in a Casson rheological fluid from a semi-infinite vertical plate with partial slip[J]. Heat Transfer—Asian Research,2013,44(3): 272-291.
    [27]
    Abolbashari M H, Freidoonimehr N, Nazari F, Rashidi M M. Analytical modeling of entropy generation for Casson nano-fluid flow induced by a stretching surface[J]. Advanced Powder Technology, 2015,26(2): 542-552.
    [28]
    Sparrow E M, Lin S H. Laminar heat transfer in tubes under slip-flow conditions[J].Journal of Heat Transfer,1962,84(4): 363-639.
    [29]
    Inman R M. Heat transfer for laminar slip flow of a rarefied gas in a parallel plate channel or acircular tube with uniform wall temperature[J]. Solar Energy,1965,9(3): 109-168.
    [30]
    Mukhopadhyay S, Golra R S R. Slip effects on boundary layer flow and heat transfer along a stretching cylinder[J]. International Journal of Applied Mechanics and Engineering,2013,18(2): 447-459.
    [31]
    Mukhopadhyay S. MHD boundary layer slip flow along a stretching cylinder[J]. Ain Shams Engineering Journal,2013,4(2): 317-324.
    [32]
    Mukhopadhyay S. Chemically reactive solute transfer in a boundary layer slip flow along a stretching cylinder[J]. Frontiers of Chemical Science and Engineering,2011,5(3): 385-391.
    [33]
    Hayat T, Qayyum A, Alsaedi A. Effects of heat and mass transfer in flow along a vertical stretching cylinder with slip conditions[J]. The European Physical Journal Plus,2014,129(4): 524-531.
    [34]
    Majeed A, Javed T, Ghaffari A, Rashidi M M. Analysis of heat transfer due to stretching cylinder with partial slip and prescribed heat flux: a Chebyshev spectral Newton iterative scheme[J]. Alexandria Engineering Journal,2016,54(4): 1029-1036.
    [35]
    Megahed A M. Effect of slip velocity on Casson thin film ow and heat transfer due to unsteady stretching sheet in presence of variable heat flux and viscous dissipation[J]. Applied Mathematics and Mechanics(English Edition),2015,36(10): 1273-1284.
    [36]
    Prasad V R, Rao A S, Reddy N B, Vasu B, Bég O A. Modelling laminar transport phenomena in a Casson rheological fluid from a horizontal circular cylinder with partial slip[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering,2012,227(4): 309-326.
    [37]
    Makinde O D, Aziz A. Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition[J]. International Journal of Thermal Sciences,2011,50(7): 1326-1332.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1034) PDF downloads(455) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return