TANG Xiao-jun, HUI Tian-li, WANG Zhen-qing, YANG Feng-long. Numerical Simulation of Impact Dynamic Responses and Interlayer Failure of CFRMLs Under Thermal Loads[J]. Applied Mathematics and Mechanics, 2016, 37(10): 1026-1038. doi: 10.21656/1000-0887.370092
Citation: TANG Xiao-jun, HUI Tian-li, WANG Zhen-qing, YANG Feng-long. Numerical Simulation of Impact Dynamic Responses and Interlayer Failure of CFRMLs Under Thermal Loads[J]. Applied Mathematics and Mechanics, 2016, 37(10): 1026-1038. doi: 10.21656/1000-0887.370092

Numerical Simulation of Impact Dynamic Responses and Interlayer Failure of CFRMLs Under Thermal Loads

doi: 10.21656/1000-0887.370092
Funds:  The National Natural Science Foundation of China(11272096)
  • Received Date: 2016-03-31
  • Rev Recd Date: 2016-05-29
  • Publish Date: 2016-10-15
  • To investigate the impact response characteristics of carbon fiber reinforced metal laminates (CFRMLs) and the effects of thermal loads on the impact performance of CFRMLs, the VUMAT user subroutine for composite progressive damage modes and the Johnson-Cook model based on ABAQUS/Explicit were employed to simulate the impact response process of carbon fiber reinforced epoxy resin matrix composite-stainless steel laminates under different ambient temperatures. The dynamic responses and damage evolution of CFRMLs were discussed. The effects of thermal loads on the kinetic energy absorption, the contact force and the failure modes of CFRMLs were analyzed detailedly. The results show that the main failure forms of CFRMLS under high-speed impact loads involve the brittle fracture of carbon fiber layers, the plastic deformation of metal layers and the delamination between carbon fiber layers and metal layers. The thermal load has significant effects on the impact performance of CFRMLs. The residual bullet velocity and the contact force between the bullet and CFRMLs are directly influenced by the thermal load. In general, with the rise of the ambient temperature, the contact force decreases while the residual bullet velocity increases. This indicates that the thermal load rise reduces the kinetic energy absorption capability of CFRMLs, and weakens the anti-impact performance of CFRMLs. The thermal load also has great effects on the global failure, fiber failure, matrix failure and delamination of CFRMLs during the impact process.
  • loading
  • [1]
    Vogelesang L B, Vlot A. Development of fibre metal laminates for advanced aerospace structures[J]. Journal of Materials Processing Technology,2000,103(1): 1-5.
    [2]
    万云, 王振清, 周利民, 章继峰. 表面机械研磨(SMAT)技术对玻璃纤维增强铝金属层板(GLARE)拉伸性能的影响[J]. 应用数学和力学, 2014,35(10): 1107-1114.(WAN Yun, WANG Zhen-qing, ZHOU Li-min, ZHANG Ji-feng. Effect of surface mechanical attrition treatment (SMAT) on the tensile performance of fibre reinforced aluminium laminates[J]. Applied Mathematics and Mechanics, 2014,35(10): 1107-1114.(in Chinese))
    [3]
    顾伯洪, 孙宝忠. 纺织结构复合材料冲击动力学[M]. 北京: 科学出版社, 2012.(GU Bo-hong, SUN Bao-zhong. Textile Structural Composites Impact Dynamics [M]. Beijing: Science Press, 2012.(in Chinese))
    [4]
    Ahmadi H, Sabouri H, Liaghat G, Bidkhori E. Experimental and numerical investigation on the high velocity impact response of GLARE with different thickness ratio[J]. Procedia Engineering,2011,10: 869-874.
    [5]
    Yaghoubi A S, Liaw B. Effect of lay-up orientation on ballistic impact behaviors of GLARE 5 FML beams[J]. International Journal of Impact Engineering,2013,54: 138-148.
    [6]
    Morinière F D, Alderliesten R C, Sadighi M, Benedictus R. An integrated study on the low-velocity impact response of the GLARE fibre-metal laminate[J]. Composite Structures,2013,100: 89-103.
    [7]
    陈勇, 庞宝君, 郑伟, 张志远. 纤维金属层板低速冲击试验和数值仿真[J]. 复合材料学报, 2014,31(3): 733-740.(CHEN Yong, PANG Bao-jun, ZHENG Wei, ZHANG Zhi-yuan. Tests and numerical simulation on low velocity impact performance of fiber metal laminates[J]. Acta Materiae Compositae Sinica,2014,31(3): 733-740.(in Chinese))
    [8]
    Morinière F D, Alderliesten R C, Benedictus R. Low-velocity impact energy partition in GLARE[J]. Mechanics of Materials,2013,66: 59-68.
    [9]
    Starikov R. Assessment of impact response of fiber metal laminates[J]. International Journal of Impact Engineering,2013,59: 38-45.
    [10]
    Vlot A. Impact properties of fibre metal laminates[J]. Composites Engineering,1993,3(10): 911-927.
    [11]
    Vlot A. Impact loading on fibre metal laminates[J]. International Journal of Impact Engineering,1996,18(3): 291-307.
    [12]
    Payeganeh G H, AshenaiGhasemi F, Malekzadeh K. Dynamic response of fiber-metal laminates (FMLs) subjected to low-velocity impact[J]. Thin-Walled Structures,2010,48(1): 62-70.
    [13]
    Laliberté JF, Poon C, Straznicky P V, Fahr A. Post-impact fatigue damage growth in fiber-metal laminates[J]. International Journal of Fatigue,2002,24(2/4): 249-256.
    [14]
    Caprinoa G, Spatarob G, Del Luongo S. Low-velocity impact behaviour of fibreglass-aluminium laminates[J]. Composites Part A: Applied Science and Manufacturing,2004,35(5): 605-616.
    [15]
    Frontán J, ZHANG Yu-ming, DAO Ming, LU Jian, Gálvez F, Jérusalem A. Ballistic performance of nanocrystalline and nanotwinned ultrafine crystal steel[J]. Acta Materialia,2012,60(3): 1353-1367.
    [16]
    Shchegel G O, Bhm R, Hornig A, Astanin V V, Hufenbach W A. Probabilistic damage modelling of textile-reinforced thermoplastic composites under high velocity impact based on combined acoustic emission and electromagnetic emission measurements[J]. International Journal of Impact Engineering,2014,69: 1-10.
    [17]
    Heimbs S, Bergmann T, Schueler D, Toso-Pentecte N. High velocity impact on preloaded composite plates[J]. Composite Structures,2014,111: 158-168.
    [18]
    Hashin Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics,1980,47(2): 329-334.
    [19]
    Tan S C. A progressive failure model for composite laminates containing openings[J]. Journal of Composite Materials,1991,25(5): 556-577.
    [20]
    刘兵山, 燕瑛, 田金梅. 纤维增强对称层合复合材料的宏观热膨胀系数研究[J]. 强度与环境, 2008,35(5): 17-24.(LIU Bing-shan, YAN Ying, TIAN Jin-mei. Study on the macro thermal expansion coefficients of fiber-reinforced symmetric laminates[J]. Structure & Environment Engineering,2008,35(5): 17-24.(in Chinese))
    [21]
    严彪. 不锈钢手册[M]. 北京: 化学工业出版社, 2009.(YAN Biao. Stainless Steel Handbook[M]. Beijing: Chemical Industry Press, 2009.(in Chinese))
    [22]
    Lie T T, Irwin R J. Fire resistance of rectangular steel columns filled with bar reinforced concrete[J]. Journal of Structural Engineering,1995,121(5): 797-805.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1042) PDF downloads(862) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return