PANG Ming-hua, LIU Kun, LIU Xiao-jun. Droplets’ Directional Motion Characteristics in Conical Microchannels and Driving Mechanisms[J]. Applied Mathematics and Mechanics, 2017, 38(3): 284-294. doi: 10.21656/1000-0887.370158
Citation: PANG Ming-hua, LIU Kun, LIU Xiao-jun. Droplets’ Directional Motion Characteristics in Conical Microchannels and Driving Mechanisms[J]. Applied Mathematics and Mechanics, 2017, 38(3): 284-294. doi: 10.21656/1000-0887.370158

Droplets’ Directional Motion Characteristics in Conical Microchannels and Driving Mechanisms

doi: 10.21656/1000-0887.370158
Funds:  The National Natural Science Foundation of China(51375132)
  • Received Date: 2016-05-23
  • Rev Recd Date: 2016-06-14
  • Publish Date: 2017-03-15
  • The droplets’ directional motion characteristics in conical microchannels with different wetting properties and driving mechanisms were studied with the numerical simulation method and the energy-based analytical method to clarify the mechanisms for directional motions of liquid in nature. The effects of the conical angle, the contact angle between the droplet and the microchannel wall as well as the microchannel wetting property on the directional motion characteristics of the droplet in the conical microchannel, were obtained. The energy-based theoretical analysis and the numerical simulation both indicate that, the conical angle and the contact angle substantially influence the motion direction and the driving force of the droplet, but with different effectivenesses. The effectiveness is in holistic consistency in the hydrophilic conical microchannel, but local features emerge in the hydrophobic conical microchannel. The study provides a theoretic base for the research of directional motion mechanisms and microfluidic flow mechanisms in the solid interface.
  • loading
  • [1]
    CHEN Hua-wei, ZHANG Peng-fei, ZHANG Li-wen, et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature,2016,532: 85-89.
    [2]
    JU Jie, ZHENG Yong-mei, JIANG Lei. Bioinspired one-dimensional materials for directional liquid transport[J]. Accounts of Chemical Research,2014,47(8): 2342-2352.
    [3]
    Parker A R, Lawrence C R. Water capture by a desert beetle[J]. Nature,2001,414: 33-34.
    [4]
    ZHENG Yong-mei, BAI Hao, HUANG Zhong-bing, et al. Directional water collection on wetted spider silk[J]. Nature,2010,463: 640-643.
    [5]
    BAI Hao, JU Jie, SUN Rui-ze, et al. Controlled fabrication and water collection ability of bioinspired artificial spider silks[J]. Advanced Materials,2011,23(32): 3708-3711.
    [6]
    Scriven L E, Sternling C V. The Marangoni effects[J]. Nature,1960,187: 186-188.
    [7]
    赵亚溥. 表面与界面物理力学[M]. 北京: 科学出版社, 2012.(ZHAO Ya-pu. Physical Mechanics of Surfaces and Interfaces [M]. Beijing: Science Press, 2012.(in Chinese))
    [8]
    赵亚溥. 纳米与介观力学[M]. 北京: 科学出版社, 2014.(ZHAO Ya-pu. Nano and Mesoscopic Mechanics [M]. Beijing: Science Press, 2014.(in Chinese))
    [9]
    Stone H A, Stroock A D, Adjari A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip[J]. Annual Review of Fluid Mechanics,2004,36: 381-411.
    [10]
    Velev O D, Prevo B G, Bhatt K H. On-chip manipulations of free droplets[J]. Nature,2003,426: 515-516.
    [11]
    Gennes P G, Brochard-Wyart F, Quéré D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves [M]. Reisinger A, transl. Berlin: Springer, 2003.
    [12]
    Srivastava N, Davenport R D, Burns M A. Nanoliter viscometer for analyzing blood plasma and other liquid samples[J]. Analytical Chemistry,2005,77(2): 383-392.
    [13]
    Di C D, Wu L Y, Lee L P. Dynamic single cell culture array[J].Lab Chip,2006,6(11): 1445-1449.
    [14]
    Kota A K, Kwon G, Choi W, et al. Hygro-responsive membranes for effective oil-water separation[J]. Nature Communications,2012,3: 1025.
    [15]
    隋涛, 蒋亮, 汪家道, 等. 润湿性梯度表面上液滴运动的数值模拟[J]. 润滑与密封, 2011,36(10): 16-19.(SUI Tao, JIANG Liang, WANG Jia-dao, et al. Numerical simulation of droplet movement on surface with gradient wetting property[J]. Lubrication Engineering,2011,36(10): 16-19.(in Chinese))
    [16]
    ZHAO Bin, Moore J S, Beebe D J. Surface-directed liquid flow inside microchannels[J]. Science,2001,291(5506): 1023-1026.
    [17]
    Kim S H, Yang Y, Kim M, et al. Simple route to hydrophilic microfluidic chip fabrication using an ultraviolet (UV)-cured polymer[J]. Advanced Functional Materials,2007,17(17): 3493-3498.
    [18]
    林林, 袁儒强, 张欣欣, 等. 液滴在梯度微结构表面上的铺展动力学分析[J]. 物理学报, 2015,64(15): 154705-1-154705-8.(LIN Lin, YUAN Ru-qiang, ZHANG Xin-xin, et al. Spreading dynamics of liquid droplet on gradient micro-structured surfaces[J]. Acta Physica Sinica,2015,64(15): 154705-1-154705-8.(in Chinese))
    [19]
    殷雅俊, 陈超, 吕存景, 等. 曲率的形状梯度和经典梯度: 微纳米曲面上的驱动力[J]. 应用数学和力学, 2011,32(5): 509-521.(YIN Ya-jun, CHEN Chao, L Cun-jing, et al. Shape gradient and classical gradient of curvatures: driving forces on micro/nano curved surface[J]. Applied Mathematics and Mechanics,2011,32(5): 509-521.(in Chinese))
    [20]
    Lü Cun-jing, CHEN Chao, CHUANG Yin-chuan, et al. Ultrafast drop movements arising from curvature gradient[J/OL]. ArXiv: 1108.4590v1, 2011[2016-10-17]. https://arxiv.org/ftp/arxiv/papers/1108/1108.4590.pdf.
    [21]
    ZHENG Quan-shui, L Cun-jing, HAO Peng-fei, et al. Small is beautiful, and dry[J].Science China Physics, Mechanics and Astronomy,2010,53(12): 2245-2259.
    [22]
    LIU Jian-lin, XIA Re, LI Bing-wei, et al. Directional motion of droplet in a conical tube or on a conical fibre[J]. Chinese Physics Letters,2007,24(11): 3210-3213.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1115) PDF downloads(1161) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return