LIU Rui, WU Zi-ying, YE Wen-teng. Dynamics Research of Bistable Electromagnetic Energy Harvesters With Auxiliary Nonlinear Oscillators[J]. Applied Mathematics and Mechanics, 2017, 38(4): 432-446. doi: 10.21656/1000-0887.370167
Citation: LIU Rui, WU Zi-ying, YE Wen-teng. Dynamics Research of Bistable Electromagnetic Energy Harvesters With Auxiliary Nonlinear Oscillators[J]. Applied Mathematics and Mechanics, 2017, 38(4): 432-446. doi: 10.21656/1000-0887.370167

Dynamics Research of Bistable Electromagnetic Energy Harvesters With Auxiliary Nonlinear Oscillators

doi: 10.21656/1000-0887.370167
Funds:  The National Natural Science Foundation of China(51274172)
  • Received Date: 2016-05-26
  • Rev Recd Date: 2016-07-22
  • Publish Date: 2017-04-15
  • With the progress of the micro-electromechanical technology, the systems self-powered by ambient vibration have become a focus in nonlinear dynamics. The concept of bistable electromagnetic vibration energy harvesters with auxiliary nonlinear oscillators was proposed through combination of a mass-spring-damper system with a bistable vibration energy harvester, and the mechanical model and control equations for this system were established, the dynamic responses of the bistable electromagnetic vibration energy harvester with a nonlinear oscillator under harmonic excitation were investigated with the parametrical changes of the mass ratio and the tuning ratio through numerical simulation. Then, in comparison with that on the bistable system with an auxiliary linear oscillator, the influence rule of the above changing parameters on the bistable electromagnetic vibration energy harvester with an auxiliary nonlinear oscillator, which would get into chaotic movement, was obtained, and the superiority of the one with an auxiliary nonlinear oscillator was demonstrated. Moreover, the optimal parameters for the bistable electromagnetic vibration energy harvester with an auxiliary nonlinear oscillator in continuous large-amplitude chaotic motion were given. These above results provide a theoretical basis for the research of bistable electromagnetic vibration energy harvesters.
  • loading
  • [1]
    廖晨. 中国页岩气资源及其勘探面临的问题[J]. 科技视界, 2016(2): 10.(LIAO Chen. China shale gas resources and its exploration problems[J]. Science and Technology Vision,2016(2): 10.(in Chinese))
    [2]
    US Energy Information Administration. Shale gas in the United States: recent developments and outlook[OL/Z]. http://www.Eia.Gov/reports, 2012.
    [3]
    Ghassemi A, Diek A. Achemo-poroelastic solution for stress and pore pressure distribution around a wellbore in transversely isotropic shale[C]// SPE/ISRM Rock Mechanics Conference.Irving, Texas, 2002: SPE-78162-MS.
    [4]
    李玉梅, 柳贡慧, 李军, 等. 页岩储层各向异性对裂缝起裂压力的影响[J]. 特种油气藏, 2014,〖STHZ〗 21(6):133-137.(LI Yu-mei, LIU Gong-hui, LI Jun, et al. The influence of anisotropic to fracture pressure in shale gas reservoirs[J]. Special Oil and Gas Reservoirs,2014,21(6): 133-137.(in Chinese))
    [5]
    Ekbote S, Abousleiman Y, Zaman M M. Porothermoelastic solutions for an inclined borehole in transversely isotropic porous media[J]. Statistics in Medicine,2000,14(2): 161-184.
    [6]
    Aadnoy B S. Stresses around horizontal boreholes drilled in sedimentary rocks[J]. Journal of Petroleum Science & Engineering,1989,2(4): 349-360.
    [7]
    马天寿, 陈平. 页岩层理对水平井井壁稳定的影响[J]. 西南石油大学学报(自然科学版), 2014,36(5): 97-104.(MA Tian-shou, CHEN Ping. Influence of shale bedding plane on wellbore stability for horizontal wells[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2014,36(5): 97-104.(in Chinese))
    [8]
    闫传梁, 邓金根, 蔚宝华, 等. 页岩气储层井壁坍塌压力研究[J]. 岩石力学与工程学报, 2013,32(8): 1595-1602.(YAN Chuan-liang, DENG Jin-gen, WEI Bao-hua, et al. Research on collapsing pressure of gas shale[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(8): 1595-1602.(in Chinese))
    [9]
    Lee H, Ong S H, Azeemuddin M, et al. A wellbore stability model for formations with anisotropic rock strengths[J]. Journal of Petroleum Science & Engineering,2012,96/97(19): 109-119.
    [10]
    Aadnoy B S. Modeling of the stability of highly inclined boreholes in anisotropic rock formations (includes associated papers 19213 and 19886 )[J]. Spe Drilling Engineering,1988,3(3): 259-268.
    [11]
    Lekhnitskii S G, Fern P, Brandstatter J J, et al. Theory of elasticity of an anisotropic elastic body[J].Physics Today,1964,17(1): 84.
    [12]
    Amadei B. Rock Anisotropy and the Theory of Stress Measurements [M]. Berlin, Heidelberg: Springer-Verlag, 1983.
    [13]
    Karpfinger F, Prioul R, Gaede O, et al. Revisiting borehole stresses in anisotropic elastic media: comparison of analytical versus numerical solutions[C]// 〖STBX〗45th U.S. Rock Mechanics/Geomechanics Symposium.San Francisco, California, 2011: ARMA-11-273.
    [14]
    赵凯, 袁俊亮, 邓金根, 等. 层理产状对页岩气水平井井壁稳定性的影响[J]. 科学技术与工程, 2013,13(3): 580-583.(ZHAO Kai, YUAN Jun-Liang, DENG Jin-gen, et al. Effect of bedding plane occurrence on horizontal shale gas wellbore stability[J]. Science Technology and Engineering,2013,13(3): 580-583.(in Chinese))
    [15]
    卢运虎, 陈勉, 袁建波, 等. 各向异性地层中斜井井壁失稳机理[J]. 石油学报, 2013,34(3): 563-568.(LU Yun-hu, CHEN Mian, YUAN Jian-bo, et al. Borehole instability mechanism of a borehole in anisotropic formation[J]. Acta Petrolei Sinica,2013,34(3): 563-568.(in Chinese))
    [16]
    张卫东, 常龙, 高佳佳. 横观各向同性地层井壁应力分析[J]. 工程力学, 2015,32(11): 243-250.(ZHANG Wei-dong, CHANG Long, GAO Jia-jia. Stress analysis at the borehole wall in tanscerse isotropic formations[J]. Engineering Mechanics, 2015,32(11): 243-250.(in Chinese))
    [17]
    Vahid S, Ahmad G. Hydraulic fracture initiation from a wellbore in transversely isotropic rock[C]//45th U.S. Rock Mechanics/Geomechanics Symposium.San Francisco, California, 2011: ARMA-11-201.
    [18]
    李军, 柳贡慧, 陈勉. 正交各向异性地层井壁围岩应力新模型[J]. 岩石力学与工程学报, 2011,30(12): 2481-2485.(LI Jun, LIU Gong-hui, CHEN Mian. New model for stress of borehole surrounding [1]ZUO Lei, TANG Xiu-dong. Large-scale vibration energy harvesting[J]. Journal of Intelligent Material Systems & Structures,2013,24(11): 1405-1430.
    [19]
    Harne R L, Wang K W. On the fundamental and superharmonic effects in bistable energy harvesting[J]. Journal of Intelligent Material Systems & Structures,2013,25(8): 937-950.
    [20]
    Stanton S C, Mcgehee C C, Mann B P. Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator[J]. Physical D Nonlinear Phenomena,2010,239(10): 640-653.
    [21]
    ZHOU Zhi-yong, QIN Wei-yang, ZHU Pei. Improve efficiency of harvesting random energy by snap-through in a quad-stable harvester[J]. Sensors and Actuators A: Physical, 2016,243: 151-158.
    [22]
    Kim P, Seok J. A multi-stable energy harvester: dynamic modeling and bifurcation analysis[J]. Journal of Sound & Vibration,2014,333(21): 5525-5547.
    [23]
    Tehrani M G, Elliott S J. Extending the dynamic range of an energy harvester using nonlinear damping[J]. Journal of Sound & Vibration,2014,333(3): 623-629.
    [24]
    Masana R, Daqaq M F. Relative performance of a vibratory energy harvester in mono- and bi-stable potentials[J]. Journal of Sound & Vibration,2011,330(24): 6036-6052.
    [25]
    Masana R, Daqaq M F. Energy harvesting in the super-harmonic frequency region of a twin-well oscillator[J]. Journal of Applied Physics,2012,111(4): 044501-044501-11.
    [26]
    Chen Y, Lu B W, Ou D P, et al. Mechanics of flexible and stretchable piezoelectrics for energy harvesting[J]. Science China Physics Mechanics & Astronomy,2015,58(9): 1-13.
    [27]
    Cao J, Syta A, Litak G, et al. Regular and chaotic vibration in a piezoelectric energy harvester with fractional damping[J]. European Physical Journal Plus,2015,130(6): 1-11.
    [28]
    李海涛, 秦卫阳. 双稳态压电能量获取系统的分岔混沌阈值[J]. 应用数学和力学, 2014,35(6): 652-662.(LI Hai-tao, QIN Wei-yang. Bifurcation and chaos thresholds of bistable piezoelectric vibration energy harvesting systems[J]. Applied Mechanics and Mathematics,2014,35(6): 652-662.(in Chinese))
    [29]
    Berdy D F, Valentino D J, Peroulis D. Design and optimization of a magnetically sprung block magnet vibration energy harvester[J]. Sensors & Actuators A: Physical,2014,218(10): 69-79.
    [30]
    Stanton S C, Mcgehee C C, Mann B P. Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator[J]. Physica D Nonlinear Phenomena,2010,239(10): 640-653.
    [31]
    CAO Jun-yi, ZHOU Sheng-xi, WANG Wei, et al. Influence of potential well depth on nonlinear tristable energy harvesting[J]. Applied Physics Letters,2015,106(17): 515-530.
    [32]
    Harne R L, Thota M, Wang K W. Bistable energy harvesting enhancement with an auxiliary linear oscillator[J]. Smart Materials & Structures,2013,22(12):126-132.
    [33]
    Chen L Q, Jiang W A. Internalresonance energy harvesting[J]. Journal of Applied Mechanics,2015,82(3): 031004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (990) PDF downloads(1790) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return