WEI Yi, DENG Zi-chen, LI Qing-jun, WANG Yan. Effects of Solar Radiation Pressure on Orbits of Space Solar Power Station[J]. Applied Mathematics and Mechanics, 2017, 38(4): 399-409. doi: 10.21656/1000-0887.370309
Citation: WEI Yi, DENG Zi-chen, LI Qing-jun, WANG Yan. Effects of Solar Radiation Pressure on Orbits of Space Solar Power Station[J]. Applied Mathematics and Mechanics, 2017, 38(4): 399-409. doi: 10.21656/1000-0887.370309

Effects of Solar Radiation Pressure on Orbits of Space Solar Power Station

doi: 10.21656/1000-0887.370309
Funds:  The National Natural Science Foundation of China(11432010;11572254)
  • Received Date: 2016-10-12
  • Rev Recd Date: 2017-03-02
  • Publish Date: 2017-04-15
  • The orbital dynamic behaviors of 3 typical space solar power stations (SSPSs) under the gravity gradient stabilized flight strategy were investigated. In view of the earth shadow and the effective cross-sectional area, a solar radiation pressure model was established. Firstly, the energy method was used, through the Legendre transformation and with the generalized momenta introduced, the canonical equations for the orbits in the Hamiltonian system were derived; then, the symplectic Runge-Kutta method was adopted to solve the corresponding canonical equations. Finally, several numerical examples were given, and the effectiveness of the proposed model and the stability of the numerical scheme were verified, in comparison with the previously reported results. The effects of the earth shadow and the effective cross-sectional area variations on SSPSs are significant. Meanwhile, the curves of the semi-major axis, eccentricity and orbital inclination in the geosynchronous orbit were obtained. The results provide a theoretical reference for the design of SSPSs.
  • loading
  • [1]
    侯欣宾, 王立, 张兴华, 等. 多旋转关节空间太阳能电站概念方案设计[J]. 宇航学报, 2015,36(11): 1332-1338.(HOU Xin-bin, WANG Li, ZHANG Xing-hua, et al. Concept design on multi-rotary joints SPS[J]. Journal of Astronautics,2015,36(11): 1332-1338.(in Chinese))
    [2]
    魏乙, 邓子辰, 李庆军, 等. 绳系空间太阳能电站动力学响应分析[J]. 宇航学报, 2016,37(9): 1041-1048.(WEI Yi, DENG Zi-chen, LI Qing-jun, et al. Analysis of dynamic response of tethered space solar power station[J]. Journal of Astronautics,2016,37(9): 1041-1048.(in Chinese))
    [3]
    侯欣宾, 王薪, 王立, 等. 空间太阳能电站反向波束控制仿真分析[J]. 宇航学报, 2016,37(7): 887-894.(HOU Xin-bin, WANG Xin, WANG Li, et al. Space power satellite retrodirective beam steering simulation[J]. Journal of Astronautics,2016,37(7): 887-894.(in Chinese))
    [4]
    Palmas A. Solar power satellites[D]. Master Thesis. Glasgow: University of Glasgow, 2013.
    [5]
    Feingold H, Carrington C. Evaluation and comparison of space solar power concepts[J].Acta Astronautica,2003,53(4/10): 547-559.
    [6]
    Seboldt W, Klimke M, Leipold M, et al. European sail tower SPS concept[J]. Acta Astronautica,2001,48(5/12): 785-792.
    [7]
    Sasaki S, Tanaka K, Higuchi K, et al. A new concept of solar power satellite: tethered-SPS[J]. Acta Astronautica,2007,60(3): 153-165.
    [8]
    Wie B, Roithmayr C M. Attitude and orbit control of a very large geostationary solar power satellite[J]. Journal of Guidance, Control, and Dynamics,2005,28(3): 439-451.
    [9]
    McNally I, Scheeres D, Radice G. Attitude dynamics of large geosynchronous solar power satellites[C]// AIAA/AAS Astrodynamics Specialist Conference . San Diego, CA, USA, 2014. doi: 10.2514/6.2014-4123.
    [10]
    McNally I, Scheeres D, Radice G. Locating large solar power satellites in the geosynchronous Laplace plane[J]. Journal of Guidance, Control, and Dynamics,2015,38(3): 489-505.
    [11]
    Valk S, Lematre A. Semi-analytical investigations of high area-to-mass ratio geosynchronous space debris including Earth’s shadowing effects[J]. Advances in Space Research,2008,42(8): 1429-1443.
    [12]
    Hubaux Ch, Lematre A, Delsate N, et al. Symplectic integration of space debris motion considering several Earth’s shadowing models[J]. Advances in Space Research,2012,49(10): 1472-1486.
    [13]
    Ishimura K, Higuchi K. Coupling among pitch motion, axial vibration, and orbital motion of large space structures[J]. Journal of Aerospace Engineering,2008,21(2): 61-71.
    [14]
    赵长印, 廖新浩, 刘林. 辛积分方法在动力天文中的应用[J]. 天文学报, 1992,33(1): 36-47.(ZHAO Zhang-yin, LIAO Xin-hao, LIU Lin. Application of symplectic integrators to dynamical astronomy[J]. Acta Astronomica Sinica,1992,33(1): 36-47.(in Chinese))
    [15]
    刘林, 廖新浩, 赵长印, 等. 辛算法在动力天文中的应用(Ⅲ)[J]. 天文学报, 1994,35(1): 51-66.(LIU Lin, LIAO Xin-hao, ZHAO Zhang-yin, et al. Application of symplectic integrators to dynamical astronomy(Ⅲ)[J]. Acta Astronomica Sinica,1994,35(1): 51-66.(in Chinese))
    [16]
    Früh C, Jah M. Attitude and orbit propagation of high area-to-mass ratio (HAMR) objects using a semi-coupled approach[J]. The Journal of the Astronautical Sciences,2013,60(1): 32-50.
    [17]
    Hernandez D M. Fast and reliable symplectic integration for planetary system N -body problems[J]. Monthly Notices of the Royal Astronomical Society,2016,458(4): 4285-4296.
    [18]
    Quinn T, Perrine R P,Richardson D C, et al. A symplectic integrator for Hill’s equations[J]. The Astronomical Journal,2010,139(2): 803-807.
    [19]
    Laskar J, Correia A C M, Gastineau M, et al. Long term evolution and chaotic diffusion of the insolation quantities of Mars[J]. Icarus,2004,170(2): 343-364.
    [20]
    Laskar J, Robutel P, Joutel F, et al. A long term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics,2004,428(1): 261-285.
    [21]
    肖峰. 人造地球卫星轨道摄动理论[M]. 长沙: 国防科技大学出版社, 1997.(XIAO Feng. Man-Made Earth Satellite Orbit Perturbation Theory [M]. Changsha: National University of Defense Technology Publishing House, 1997.(in Chinese))
    [22]
    Montenbruck O, Gill E. Satellite Orbits: Models, Methods and Applications [M]. New York: Springer, 2000.
    [23]
    Hairer E, Lubich C, Wanner G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations [M]. Berlin: Springer, 2006.
    [24]
    WEI Yi, DENG Zi-chen, LI Qing-jun, et al. Projected Runge-Kutta methods for constrained Hamiltonian systems[J]. Applied Mathematics and Mechanics(English Edition),2016,37(8): 1077-1094.
    [25]
    李庆军, 叶学华, 王博, 等. 辛Runge-Kutta方法在卫星交会对接中的非线性动力学应用研究[J]. 应用数学和力学, 2014,35(12): 1299-1307.(LI Qing-jun, YE Xue-hua, WANG Bo, et al. Nonlinear dynamic behavior of the satellite rendezvous and docking based on the symplectic Runge-Kutta method[J]. Applied Mathematics and Mechanics,2014,35(12): 1299-1307.(in Chinese))
    [26]
    Ishimura K, Higuchi K. Coupling between structural deformation and attitude motion of large planar space structures suspended by multi-tethers[J]. Acta Astronautica,2007,60(8/9): 691-710.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1149) PDF downloads(1319) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return