XU Chengjun, XU Shengli, LIU Qingyuan. Modified Particle Approximation to Pressure Gradients in the SPH Algorithm for Interfacial Flows With High Density Ratios[J]. Applied Mathematics and Mechanics, 2019, 40(1): 20-35. doi: 10.21656/1000-0887.390126
Citation: XU Chengjun, XU Shengli, LIU Qingyuan. Modified Particle Approximation to Pressure Gradients in the SPH Algorithm for Interfacial Flows With High Density Ratios[J]. Applied Mathematics and Mechanics, 2019, 40(1): 20-35. doi: 10.21656/1000-0887.390126

Modified Particle Approximation to Pressure Gradients in the SPH Algorithm for Interfacial Flows With High Density Ratios

doi: 10.21656/1000-0887.390126
  • Received Date: 2018-04-19
  • Rev Recd Date: 2018-11-12
  • Publish Date: 2019-01-01
  • Interfacial flows with high density ratios ranging from 1 to 1 000 were numerically investigated. Modified particle approximation was proposed for the pressure gradient term in the momentum equation and the repulsive force was imposed for virtual particles outside the interfaces. The Rayleigh-Taylor instability, non-Boussinesq lock exchange, dam-break flow and bubble buoyancy were numerically tested for validation of accuracy and robustness of the new SPH algorithm for multi-fluid flows. The particle distributions, pressure contours and pressure-time distributions at specified points were obtained from the computations. The results are in good agreement with those from references and experimental measurements. The captured interfaces are more smooth in comparison with those from previous literatures and no obvious oscillations are observed in the vicinity of the interfaces.
  • loading
  • [1]
    徐志敏, 宋思远, 辛锋先, 等. 小Reynolds数下粗糙圆管中黏性流场的理论解[J]. 应用数学和力学, 2018,39(2): 123-136.(XU Zhimin, SONG Siyuan, XIN Fengxian, et al. Analytical solution for the viscous flow of small Reynolds numbers in rough pipes[J]. Applied Mathematics and Mechanics,2018,39(2): 123-136.(in Chinese))
    [2]
    BRACKBILL J, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics,1992,100(2): 335-354.
    [3]
    BALACHANDAR S, EATON J K. Turbulent dispersed multiphase flow[J]. Annual Review of Fluid Mechanics,2010,42: 111-133.
    [4]
    ZHENG Jun, YU Kaiping, WANG Junfeng,et al. SPH for developing super cavity induced by high speed underwater body[J]. Chinese Journal of Computational Physics,2014,31(1): 27-32.
    [5]
    上官子柠, 周秀丽, 宋鑫, 等. 典型自由面流动问题的SPH-ALE数值模拟[J].计算物理, 2017,34(6): 641-650.(SHANGGUAN Zining, ZHOU Xiuli, SONG Xin, et al. Numerical simulation of typical free surface flow with SPH-ALE[J]. Chinese Journal of Computational Physics,2017,34(6): 641-650.(in Chinese))
    [6]
    ESPANOL P, WARREN P. Statistical mechanics of dissipative particle dynamics[J]. Europhysics Letters,1995,30(4): 191-196.
    [7]
    GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society,1977,181(3): 375-389.
    [8]
    韩亚伟, 强洪夫. 改进的物理粘性SPH方法及其在溃坝问题中的应用[J]. 计算物理, 2012,29(5): 693-699.(HAN Yawei, QIANG Hongfu. An improved SPH method with physical viscosity and application in dam-break problem[J]. Chinese Journal of Computational Physics,2012,29(5): 693-699.(in Chinese))
    [9]
    王安文, 徐绯, 张岳青. SPH方法在液固撞击数值模拟中的应用[J]. 计算物理, 2012,29(4): 525-533.(WANG Anwen, XU Fei, ZHANG Yueqing. SPH method in numerical simulation of liquid-solid impact[J]. Chinese Journal of Computational Physics,2012,29(4): 525-533.(in Chinese))
    [10]
    卞梁, 王肖钧, 章杰, 等. 高速碰撞数值计算中的SPH分区算法[J]. 计算物理, 2011,28(2): 207-212.(BIAN Liang, WANG Xiaojun, ZHANG Jie, et al. Numerical simulation of hypervelocity impact with subdomains in SPH computation[J].Chinese Journal of Computational Physics,2011,28(2): 207-212.(in Chinese))
    [11]
    COLAGROSSI A, LANDRINI M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics[J].Journal of Computational Physics,2003,191(2): 448-475.
    [12]
    CHEN Z, ZONG Z, LIU M B, et al. An SPH model for multiphase flows with complex interfaces and large density differences[J]. Journal of Computational Physics,2015,283: 169-188.
    [13]
    沈雁鸣, 陈坚强. SPH方法对气液两相流自由界面运动的追踪模拟[J]. 空气动力学学报, 2012,30(2): 157-161, 168.(SHEN Yanming, CHEN Jianqiang. Numerical tracking of interface in multiphase flows with smoothed particle hydrodynamics[J]. Acta Aerodynamica Sinica,2012,30(2): 157-161, 168.(in Chinese))
    [14]
    MONAGHAN J J. SPH without a tensile instability[J]. Journal of Computational Physics,2000,159(2): 290-311.
    [15]
    HU X Y, ADAMS N A. An incompressible multi-phase SPH method[J]. Journal of Computational Physics,2007,227(1): 264-278.
    [16]
    COLAGROSSI A. A meshless Lagrangian method for free-surface and interface flows with fragmentation[D]. PhD Thesis. Rome: University of Rome, 2005
    [17]
    HOOGERBRRUGGE P J, KOELMAN J M V A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics[J]. Europhys Letter,1992,19(3): 155-160.
    [18]
    HU X Y, ADAMS N A. A multi-phase SPH method for macroscopic and mesoscopic flows[J]. Journal of Computational Physics,2006,213(2): 844-861.
    [19]
    MONAGHAN J J, RAFIEE A. A simple SPH algorithm for multi-fluid flow with high density ratios[J]. International Journal for Numerical Methods in Fluids,2013,71(5): 537-561.
    [20]
    MONAGHAN J J. Simulating free surface flows with SPH[J]. Journal of Computational Physics,1994,110(2): 399-406.
    [21]
    LIU M B, LIU G R. Smoothed particle hydrodynamics (SPH): an overview and recent developments[J]. Archives of Computational Methods in Engineering,2010,17(1): 25-76
    [22]
    EDMOND Y M, SHAO S D. Simulation of near-shore solitary wave mechanics by an incompressible SPH method[J].Applied Ocean Research,2002,24(5): 275-286.
    [23]
    MONAGHAN J J. Shock simulation by the particle method SPH[J]. Journal of Computational Physics,1983,52(2): 374-389.
    [24]
    沈雁鸣. 基于SPH方法的物体入水冲击问题数值模拟研究[D]. 博士学位论文. 绵阳: 中国空气动力研究与发展中心研究生部, 2016: 24-26.(SHEN Yanming. A numerical study of water entry problems based on smoothed particle hydrodynamics (SPH) method[D]. PhD Thesis. Mianyang: The Graduate Faculty of China Aerodynamics Research and Development Center, 2016: 24-26.(in Chinese))
    [25]
    陈臻. SPH算法改进及在晃荡与入水中的应用[D]. 硕士学位论文. 大连: 大连理工大学, 2014.(CHEN Zhen.Improving SPH methodology with its application to sloshing and water entry[D]. Master Thesis. Dalian: Dalian University of Technology, 2014.(in Chinese))
    [26]
    LIU M B, SHAO J R, CHANG J Z. On the treatment of solid boundary in smoothed particle hydrodynamics[J]. Science China Technological Sciences,2012,55(1): 244-254.
    [27]
    CUMMINS S J, RUDMAN M. An SPH projection method[J]. Journal of Computational Physics,1999,152(2): 584-607.
    [28]
    LEE H G, KIM J. Numerical simulation of the three-dimensional Rayleigh-Taylor instability[J]. Computers and Mathematics With Applications,2013,66(8): 1466-1474.
    [29]
    GRENIER N, ANTUONO M, COLAGROSSI A, et al. An Hamiltonian interface SPH formulation for multi-fluid and free surface flows[J]. Journal of Computational Physics,2009,228(22): 8380-8393.
    [30]
    DALZIEL S. Toy models for Rayleigh Taylor instability[C]//8th International Workshop on the Physics of Compressible Turbulent Mixing . Lawrence Livermore National Laboratory: UCRL-MI-146350, 2001.
    [31]
    BIRMAN V K, MARTIN J E, MEIBURG E. The non-Boussinesq lock-exchange problem, part 2: high-resolution simulations[J]. Journal of Fluid Mechanics,2005,537: 125-144.
    [32]
    LOWE R J, ROTTMAN J W,LINDEN P F. The non-Boussinesq lock-exchange problem, part 1: theory and experiments[J]. Journal of Fluid Mechanics,2005,537: 101-124.
    [33]
    SUSSMAN M, SMEREKA P, OSHER S. A level set approach for computing solutions to incompressible two-phase flow[J]. Journal of Computational Physics,1994,114(1): 146-159.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1780) PDF downloads(531) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return