ZHANG Yan, LI Fanru, LI Wei, LIU Zuojun. Dynamic Analysis and Simulation of the Lower Extremity Exoskeleton Based on Human-Machine Interaction[J]. Applied Mathematics and Mechanics, 2019, 40(7): 780-790. doi: 10.21656/1000-0887.390212
Citation: ZHANG Yan, LI Fanru, LI Wei, LIU Zuojun. Dynamic Analysis and Simulation of the Lower Extremity Exoskeleton Based on Human-Machine Interaction[J]. Applied Mathematics and Mechanics, 2019, 40(7): 780-790. doi: 10.21656/1000-0887.390212

Dynamic Analysis and Simulation of the Lower Extremity Exoskeleton Based on Human-Machine Interaction

doi: 10.21656/1000-0887.390212
Funds:  The National Natural Science Foundation of China(61773151;61703135)
  • Received Date: 2018-08-03
  • Rev Recd Date: 2019-05-23
  • Publish Date: 2019-07-01
  • A human body-exoskeleton model with human-machine interaction was established. The human body and the exoskeleton were modeled respectively with a 7-link rigid body mechanism, and the D-H coordinate system was introduced to obtain the change vectors of the human-machine model during motion. The Newton-Euler equations were used for dynamic analysis, and the body-exoskeleton interaction was simplified as elastic forces. According to the distance changes between the centroids of the body and the exoskeleton in motion, the relative displacements and the interaction forces were determined. Finally, the dynamic model was simulated with the ADAMS (automatic dynamic analysis of mechanical system), and the joint torques obtained from the dynamic equations were substituted into the simulation. The results verify the correctness of the body-exoskeleton model.
  • loading
  • [1]
    SANKAI Y. HAL: hybrid assistive limb based on cybernics[C]// The 13th International Symposium, ISRR. Hiroshima, Japan, 2007.
    [2]
    ZOSS A B, KAZEROONI H, CHU A. Biomechanical design of the Berkeley lower extremity exoskeleton(BLEEX)[J]. IEEE/ASME Transactions on Mechatronics,2006,11(2): 128-138.
    [3]
    BOCK T, LINNER T. Construction Robots: Elementary Technologies and Single-Task Construction Robots [M]. Cambridge: Cambridge University Press, 2016.
    [4]
    GUO Z, YU H, YIN Y H. Developing a mobile lower limb robotic exoskeleton for gait rehabilitation[J]. Journal of Medical Devices,2014,8(4): 044503.
    [5]
    杨魏, 张秀峰, 杨灿军, 等. 基于人机5杆模型的下肢外骨骼系统设计[J]. 浙江大学学报(工学版), 2014,48(3): 430-435.(YANG Wei, ZHANG Xiufeng, YANG Canjun, et al. Design of a lower extremity exoskeleton based on 5-bar human machine model[J]. Journal of Zhejiang University(Engineering Science),2014,48(3): 430-435.(in Chinese))
    [6]
    FENG T R, NISHIGUCHI J, LI X, et al. Dynamical analyses of humanoid’s walking by using extended Newton-Euler method[C]// The Twentieth International Symposium on Artificial Life and Robotics 2015 . Beppu, Japan, 2015.
    [7]
    贾山, 韩亚丽, 路新亮, 等. 基于人体特殊步态分析的下肢外骨骼机构设计[J]. 机器人, 2014,36(4): 392-401.(JIA Shan, HAN Yali, LU Xinliang, et al. Design of lower extremity exoskeleton based on analysis on special human gaits[J]. Robot,2014,36(4): 392-401.(in Chinese))
    [8]
    唐志勇, 谭振中, 裴忠才. 下肢外骨骼机器人动力学分析与设计[J]. 系统仿真学报, 2013,25(6): 1338-1344.(TANG Zhiyong, TAN Zhenzhong, PEI Zhongcai. Design and dynamic analysis of lower extremity exoskeleton[J]. Journal of System Simulation,2013,25(6): 1338-1344.(in Chinese))
    [9]
    韩亚丽, 王兴松. 下肢助力外骨骼的动力学分析及仿真[J]. 系统仿真学报, 2013,25(1): 61-67.(HAN Yali, WANG Xingsong. Dynamic analysis and simulation of lower limb power-assisted exoskeleton[J]. Journal of System Simulation,2013,25(1): 61-67.(in Chinese))
    [10]
    陈贵亮, 李长鹏, 赵月, 等. 下肢外骨骼康复机器人的动力学建模及神经网络辨识仿真[J]. 机械设计与制造, 2013(11): 197-200.(CHEN Guiliang, LI Changpeng, ZHAO Yue, et al. Dynamic modeling and neural network identification simulation for lower limbs exoskeletons rehabilitation robot[J]. Machinery Design & Manufacture,2013(11): 197-200.(in Chinese))
    [11]
    SPENCER A M, KEVIN H H, CLARE H, et al. An assistive control approach for a lower-limb exoskeleton to facilitate recovery of walking following stroke[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2015,23(3): 441-449.
    [12]
    ZHU Q H, CHEN Z L, LI W D, et al. Structure design and analysis of compliant human-machine interface mechanism for exoskeletons[C]//2017 IEEE Workshop on Advanced Robotics and Its Social Impacts(ARSO) . Austin, USA, 2017.
    [13]
    PENG Z Q, MA G W, LUO M D. Modeling and gait generation of powered lower exoskeleton robot[C] //2017 12th IEEE Conference on Industrial Electronics and Applications(ICIEA) . Siem Reap, Cambodia, 2017: 1802-1807.
    [14]
    刘棣斐, 唐志勇, 裴忠才. 基于导纳原理的下肢外骨骼摆动控制[J]. 北京航空航天大学学报, 2015,41(6): 1019-1025.(LIU Difei, TANG Zhiyong, PEI Zhongcai. Swing motion control of lower extremity exoskeleton based on admittance method[J]. Journal of Beijing University of Aeronautics and Astronautics,2015,41(6): 1019-1025.(in Chinese))
    [15]
    WANG D H, LEE K M, GUO J J, et al. An adaptive knee joint exoskeleton based on biological geometries[J]. IEEE/ASME Transactions on Mechatronics,2014,19(4): 1268-1278.
    [16]
    PHOENIX Medical Exoskeleton[EB/OL]. [2016-11-18]. https://www.suitx.com/phoenix-medical-exoskeleton.
    [17]
    易金花, 喻洪流, 张颖, 等. 中央驱动式上肢康复机器人运动学建模与分析[J]. 生物医学工程学, 2015,32(6): 1196-1201.(YI Jinhua, YU Hongliu, ZHANG Ying, et al. Kinematics modeling and analysis of central-driven robot for upper limb rehabilitation after stroke[J]. Journal of Biomedical Engineering,2015,32(6): 1196-1201.(in Chinese))
    [18]
    赵志刚, 王砚麟, 苏程, 等. 多机器人协调吊运系统逆运动学分析及优化[J]. 应用数学和力学, 2017,38(6): 643-651.(ZHAO Zhigang, WANG Yanlin, SU Cheng, et al. Analysis and optimization on inverse kinematics for multi-robot parallel lifting systems[J]. Applied Mathematics and Mechanics,2017,38(6): 643-651.(in Chinese))
    [19]
    王阳, 宋遒志, 王晓光. 下肢外骨骼机器人人机腿部约束分析[J]. 现在制造技术与装备, 2016(1): 50-52.(WANG Yang, SONG Qiuzhi, WANG Xiaoguang. Research of a lower extremity exoskeleton for human-machine leg restriction[J]. Manufacturing Technology and Equipment,2016(1): 50-52.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1263) PDF downloads(722) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return