LIU Xiaomei, ZHOU Gang, ZHU Shuai. A Highly Precise Symplectic Direct Integration Method Based on Phase Errors for Hamiltonian Systems[J]. Applied Mathematics and Mechanics, 2019, 40(6): 595-608. doi: 10.21656/1000-0887.390249
Citation: LIU Xiaomei, ZHOU Gang, ZHU Shuai. A Highly Precise Symplectic Direct Integration Method Based on Phase Errors for Hamiltonian Systems[J]. Applied Mathematics and Mechanics, 2019, 40(6): 595-608. doi: 10.21656/1000-0887.390249

A Highly Precise Symplectic Direct Integration Method Based on Phase Errors for Hamiltonian Systems

doi: 10.21656/1000-0887.390249
Funds:  The National Natural Science Foundation of China(50876066)
  • Received Date: 2018-09-21
  • Rev Recd Date: 2018-10-11
  • Publish Date: 2019-06-01
  • Symplectic methods, including the generating function method, the symplectic Runge-Kutta (RK) method, the symplectic partitioned Runge-Kutta method, the multi-step method and so on, are applicable to Hamiltonian systems. They can preserve the symplectic structure in the phase space and the laws of the Hamiltonian system. But in the time domain, due to phase lags in the computing course, the RK methods and the symplectic methods have the same algebraic precision under the same algebraic order of schemes. After longtime computing, the numerical precision goes worse and worse in the time domain. To improve the precision, a new method combining the highly precise direct integration method with the symplectic difference scheme, called the HPD-symplectic method, was proposed. This method, proved to be symplectic, can preserve the symplectic structure. Moreover, the HPD-symplectic method can largely decrease the phase error in the time domain, and accordingly, improve the numerical precision even up to an error level of 10-13. For systems with mixed frequencies or rigid systems, the traditional symplectic methods can hardly work well, while the HPD-symplectic method can simulate the signals at both high and low frequencies well with large time steps but no additional computation cost. The results of numerical examples demonstrate the reliability and effectiveness of the proposed method.
  • loading
  • [1]
    FENG K. Difference schemes for Hamiltonian formalism and symplectic geometry[J]. Journal of Computational Mathematics,1986,4(3): 279-289.
    [2]
    GRTZ P. Backward error analysis of symplectic integrators for linear separable Hamiltonian systems[J]. Journal of Computational Mathematics,2002,20(5): 449-460.
    [3]
    邢誉峰, 杨蓉. 单步辛算法的相位误差分析及修正[J]. 力学学报, 2007,39(5): 668-671.(XING Yufeng, YANG Rong. Phase errors and their correction in symplectic implicit single-step algorithm[J]. Chinese Journal of Theoretical and Applied Mechanics,2007,39(5): 668-671.(in Chinese))
    [4]
    MONOVASILIS T, KALOGIRATOU Z, SIMOS T E. Symplectic partitioned Runge-Kutta methods with minimal phase-lag[J]. Computer Physics Communications,2010,181(7): 1251-1254.
    [5]
    SIMOS T E. A two-step method with vanished phase-lag and its first two derivatives for the numerical solution of the Schrdinger equation[J]. Journal of Mathematical Chemistry,2011,49(10): 2486-2518.
    [6]
    MONOVASILIS T, KALOGIRATOU Z, SIMOS T E. Two new phase-fitted symplectic partitioned Runge-Kutta methods[J]. International Journal of Modern Physics C,2011,22(12): 1343-1355.
    [7]
    陈璐, 王雨顺. 保结构算法的相位误差分析及其修正[J]. 计算数学, 2014,36(3): 271-290.(CHEN Lu, WANG Yushun. Phase error analysis and correction of structure preserving algorithms[J]. Mathematica Numerica Sinica,2014,36(3): 271-290.(in Chinese))
    [8]
    VYVER H V D. A symplectic Runge-Kutta-Nystrom method with minimal phase-lag[J]. Physics Letters A,2007,367(1/2): 16-24.
    [9]
    MONOVASILIS Th, KALOGIRATOU Z, SIMOS T E. Exponentially fitted symplectic Runge-Kutta-Nystrm methods[J]. Applied Mathematics & Information Sciences,2013,7(1): 81-85.
    [10]
    刘晓梅, 周钢, 王永泓, 等. 辛算法的纠飘研究[J]. 北京航空航天大学学报, 2013,39(1): 22-26.(LIU Xiaomei, ZHOU Gang, WANG Yonghong, et al. Rectifying drifts of symplectic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2013,39(1): 22-26.(in Chinese))
    [11]
    MONOVASILIS Th. Symplectic partitioned Runge-Kutta methods with the phase-lag property[J]. Applied Mathematics and Computation,2012,218(18): 9075-9084.
    [12]
    XI X P, SIMOS T E. A new high algebraic order four stages symmetric two-step method with vanished phase-lag and its first and second derivatives for the numerical solution of the Schrdinger equation and related problems[J]. Journal of Mathematical Chemistry,2016,54(7): 1417-1439.
    [13]
    朱帅, 周钢, 刘晓梅, 等. 精细辛有限元方法及其相位误差研究[J]. 力学学报, 2016,48(2): 399-405.(ZHU Shuai, ZHOU Gang, LIU Xiaomei, et al. Precise symplectic time finite element method and the study of phase error[J]. Chinese Journal of Theoretical and Applied Mechanics,2016,48(2): 399-405.(in Chinese))
    [14]
    钟万勰. 结构动力方程的精细时程积分法[J]. 大连理工大学学报, 1994,37(2): 131-136.(ZHONG Wanxie. On precise time-integration method for structural dynamics[J]. Journal of Dalian University of Technology,1994,37(2): 131-136.(in Chinese))
    [15]
    钟万勰, 吴峰, 孙雁, 等. 保辛水波动力学[J]. 应用数学和力学, 2018,39(8): 855-874.(ZHONG Wanxie, WU Feng, SUN Yan, et al. Symplectic water wave dynamics[J]. Applied Mathematics and Mechanics,2018,39(8): 855-874.(in Chinese))
    [16]
    富明慧, 李勇息. 求解病态线性方程组的预处理精细积分法[J]. 应用数学和力学, 2018,39(4): 462-469.(FU Minghui, LI Yongxi. A preconditioned precise integration method for solving ill-conditioned linear equations[J]. Applied Mathematics and Mechanics,2018,39(4): 462-469.(in Chinese))
    [17]
    HUANG Y A, DENG Z C, YAO L X. An improved symplectic precise integration method for analysis of the rotating rigid-flexible coupled system[J]. Journal of Sound and Vibration,2007,299(1/2): 229-246.
    [18]
    曾进, 周钢. 精细辛算法[J]. 上海交通大学学报, 1997,31(9): 31-33.(ZENG Jin, ZHOU Gang. Precise symplectic algorithm[J]. Journal of Shanghai Jiaotong University,1997,31(9): 31-33.(in Chinese))
    [19]
    黄永安, 尹周平, 邓子辰, 等. 多体动力学的几何积分方法研究进展[J]. 力学进展, 2009,39(1): 44-57.(HUANG Yongan, YIN Zhouping, DENG Zicheng, et al. Progress in geometric integration method for multibody dynamics[J]. Advances in Mechanics,2009,39(1): 44-57.(in Chinese))
    [20]
    徐明毅, 张勇传. 精细辛算法的高效格式和简化计算[J]. 力学与实践, 2005,27(1): 55-57.(XU Mingyi, ZHANG Yongchuan. Efficient format and simple computation of precise symplectic integration method[J]. Mechanics in Engineering, 2005,27(1): 55-57.(in Chinese))
    [21]
    BRUSA L, NIGRO L. A one-step method for direct integration of structural dynamic equations[J]. International Journal for Numerical Methods in Engineering,1980,15(5): 685-699.
    [22]
    DAVID C, ERNST H, LUBICH C. Numerical energy conservation for multi-frequency oscillatory differential equations[J]. BIT Numerical Mathematics,2005,45(2): 287-305.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1227) PDF downloads(438) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return