LIANG Bin, SHI Xiaohai, YU Cunxiang, LI Huimin, LI Juncheng. Analysis of Effects on Shock Initiation Performances for Booster Charge Structure Parameters[J]. Applied Mathematics and Mechanics, 2019, 40(8): 893-909. doi: 10.21656/1000-0887.390306
Citation: LIANG Bin, SHI Xiaohai, YU Cunxiang, LI Huimin, LI Juncheng. Analysis of Effects on Shock Initiation Performances for Booster Charge Structure Parameters[J]. Applied Mathematics and Mechanics, 2019, 40(8): 893-909. doi: 10.21656/1000-0887.390306

Analysis of Effects on Shock Initiation Performances for Booster Charge Structure Parameters

doi: 10.21656/1000-0887.390306
Funds:  The National Natural Science Foundation of China(11672278)
  • Received Date: 2018-11-22
  • Rev Recd Date: 2019-03-04
  • Publish Date: 2019-08-01
  • The booster charge structure has direct effects on the detonation wave propagation, the driven flyers and the shock initiation performance. To analyze the influence of the booster charge structure on the performance parameters of the flyer power, a numerical simulation scheme was designed based on the orthogonal test principle in view of the 3 structural parameters, including the flyer thickness, the charge diameter and the flyer height. The AUTODYN3D finite difference program was used to establish the corresponding numerical model, and the main charge structure parameters influencing the flyer velocity, momentum and kinetic energy indexes were obtained through statistical analysis of the simulation results. The analyses and results provide a theoretical basis for the design of similar booster charges.
  • loading
  • [1]
    孙承纬. 爆炸物理学[M]. 北京: 科学出版社, 2011.(SUN Chengwei. Explosive Physics [M]. Beijing: Science Press, 2011.(in Chinese))
    [2]
    董海山. 炸药及相关物性[M]. 绵阳: 中国工程物理研究院, 2005: 325-327.(DONG Haishan. High Energy Explosive and Correlative Physical Properties [M]. Mianyang: China Academy of Engineering Physics, 2005: 325-327.(in Chinese))
    [3]
    张宝坪, 张庆明, 黄风雷. 爆轰物理学[M]. 北京: 兵器工业出版社, 2001.(ZHANG Baoping, ZHANG Qingming, HUANG Fenglei. Dctonation Physics [M]. Beijing: Ordnance Industry Press, 2001.(in Chinese))
    [4]
    CHEN Weidong, ZHANG Zhong, LIU Jialiang. Numerical simulation and analysis of shock initiation of shielded explosive impacted by fragments[J]. Acta Armament,2009,30(9): 1187-1191.
    [5]
    白志玲, 段卓平, 景莉, 等. 飞片冲击起爆高能钝感高聚物粘结炸药的实验研究[J]. 兵工学报, 2016,37(8): 1464-1468.(BAI Zhiling, DUAN Zhuoping, JING Li, et al. Experimental research on initiation of insensitive high energy plastic bonded explosives by flyer impact[J]. Acta Armamentarii,2016,37(8): 1464-1468.(in Chinese))
    [6]
    GREBENKIN K F. Comparative analysis of physical mechanisms of detonation initiation in HMX and in a low-sensitive explosive(TATB)[J]. Combustion Explosion and Shock Waves,2008,45(1): 78-87.
    [7]
    虞德水, 赵锋, 谭多望, 等. JOB-9003和JB-9014炸药平面爆轰驱动飞片的对比研究[J]. 爆炸与冲击, 2006,26(2): 140-144.(YU Deshui, ZHAO Feng, TAN Duowang, et al. Experimental studies on detonation driving behavior of JOB-9003 and JB-9014 slab explosives[J]. Explosion and Shock Waves,2006,26(2): 140-144.(in Chinese))
    [8]
    向梅, 黄毅民, 韩勇, 等. JO-9159与JB-9014复合药柱爆轰驱动平面飞片实验与数值模拟[J]. 高压物理学报, 2014,28(3): 379-384.(XIANG Mei, HUANG Yimin, HAN Yong, et al. Experimental study and numerical simulation of plane flyer driven by detonation of JO-9159 and JB-9014 composite charge[J]. Chinese Journal of High Pressure Physics,2014,28(3): 379-384.(in Chinese))
    [9]
    孙占峰, 徐辉, 李庆忠, 等. 钝感高能炸药爆轰产物JWL状态方程再研究[J]. 高压物理学报, 2010,24(1): 55-60.(SUN Zhanfeng, XU Hui, LI Qingzhong, et al. Further study on JWL equation of state of detonation product for insensitive high explosive[J]. Chinese Journal of High Pressure Physics,2010,24(1): 55-60.(in Chinese))
    [10]
    郭俊峰, 曾庆轩, 李明愉, 等. 飞片材料对微装药驱动飞片形貌的影响[J]. 高压物理学报, 2017,31(3): 315-320.(GUO Junfeng, ZENG Qingxuan, LI Mingyu, et al. Influence of flyer material on morphology of flyer driven by micro charge[J]. Chinese Journal of High Pressure Physics,2017,31(3): 315-320.(in Chinese))
    [11]
    LEE E L, TARVER C M. Phenomenological model of shock initiation in heterogeneous explosives[J]. Physics of Fluids,1980,23(12). DOI: 10.1063/1.862940.
    [12]
    WEN L J, DUAN Z P, ZHANG L S, et al. Effects of HMX particle size on the shock initiation of PBXC03 explosive[J]. International Journal of Nonlinear Sciences and Numerical Simulation,2012,13(2): 189-194.
    [13]
    CRAIG M T, STEVEN K C. Ignition and growth modeling of short pulse shock initiation experiments on fine particle hexanitrostilbene(HNS)[J]. Journal of Physics Conference Series,2014,500(5): 052044.
    [14]
    HELD M. Initiation phenomena of uncovered or covered high explosive charges by jets or projectile[C]// Proceedings of the 3rd International Autumn Seminar on Propellants, Explosive, and Pyrotechnics . Chengdu: Sichuan Publishing House of Science & Technology, 1999: 273-289.
    [15]
    ZHANG T, LIU Y S, GAO Z P, et al. Numerical simulation of the interlayer effects for fragments impacting steel-covered charge[J]. Explosion and Shock Waves,2017,38(6): 1241-1244.
    [16]
    ZHANG X F, SHI A S, QIAO L, et al. Experimental study on impact-initiated characters of multifunctional energetic structural materials[J]. Journal of Applied Physics,2013,113(8): 2129-1156.
    [17]
    LUO P G, WANG Z C, JIANG C L, et al. Experimental study on impact-initiated characters of W/Zr energetic fragments[J]. Materials & Design,2015,84: 72-78.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (973) PDF downloads(362) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return