XIAO Yougang, ZHU Chengzhen, LU Hao, HAN Kun. CADRC for a Class of Underactuated MIMO Systems[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1197-1209. doi: 10.21656/1000-0887.390356
Citation: XIAO Yougang, ZHU Chengzhen, LU Hao, HAN Kun. CADRC for a Class of Underactuated MIMO Systems[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1197-1209. doi: 10.21656/1000-0887.390356

CADRC for a Class of Underactuated MIMO Systems

doi: 10.21656/1000-0887.390356
  • Received Date: 2018-12-14
  • Rev Recd Date: 2020-03-16
  • Publish Date: 2020-11-01
  • The control of widely used underactuated multi-input multi-output (UMIMO) systems is still an open challenge. The underactuated system was composed of direct drive parts and indirect drive parts. For the direct drive parts, the virtual feedback control laws were designed according to their current states and target states; for the indirect drive parts, the inner uncertainties and external disturbances were estimated through the designed linear extended state observer (ESO), and the virtual feedback control laws were designed to compensate the lumped disturbances in real time. All the virtual control laws were integrated into the comprehensive control law to realize the centralized active disturbance rejection control (CADRC) of the underactuated system, and the stability of the algorithm was strictly proved with the Lyapunov method. Test results indicated that, the whole control system is compact, robust and actively disturbance-rejected, and the control gains are easy to be tuned.
  • loading
  • [1]
    ABDEL R E, NAYFEH A H, MASOUD Z N. Dynamics and control of cranes: a review[J]. Journal of Vibration and Control,2003,9(7): 863-908.
    [2]
    RAMLI L, MOHAMED Z, ABDULLAHI A M, et al. Control strategies for crane systems: a comprehensive review[J]. Mechanical Systems and Signal Processing,2017,95(10): 1-23.
    [3]
    MUKHTAR F H, HWA J Y, IMTIAZ A C, et al. Current development on using rotary inverted pendulum as a benchmark for testing linear and nonlinear control algorithms[J]. Mechanical Systems and Signal Processing,2019,116(1): 347-369.
    [4]
    BARA J E, HOMAYOUN N. A review of quadrotor: an underactuated mechanical system[J]. Annual Reviews in Control,2018,46: 165-180.
    [5]
    郭晨, 汪洋, 孙富春. 欠驱动水面船舶运动控制研究综述欠驱动水面船舶运动控制研究综述[J]. 控制与决策, 2011,24(3): 321-329.(GUO Chen, WANG Yang, SUN Fuchun. Survey for motion control of underactuated surface vessels[J]. Control and Decision,2011,24(3): 321-329.(in Chinese))
    [6]
    易中贵, 戈新生. 基于 Gauss 伪谱法的欠驱动航天器姿态优化控制[J]. 应用数学和力学, 2017,38(12): 1319-1330.(YI Zhonggui, GE Xinsheng. Optimal attitude control of underactuated spacecrafts with the Gauss pseudospectral method[J]. Applied Mathematics and Mechanics,2017,38(12): 1319-1330.(in Chinese))
    [7]
    赵晨, 戈新生. 基于虚拟完整约束的欠驱动起重机控制方法[J]. 应用数学和力学, 2019,40(3): 302-310.(ZHAO Chen, GE Xinsheng. A control method for underactuated cranes based on virtual holonomic constraints[J]. Applied Mathematics and Mechanics,2019,40(3): 302-310.(in Chinese))
    [8]
    陈彦杰. 欠驱动机器人系统的运动规划方法及应用研究[D]. 博士学位论文. 长沙: 湖南大学, 2017.(CHEN Yanjie. Research on motion planning methods for underactuated robotic systems and their applications[D]. PhD Thesis. Changsha: Hunan University, 2017.(in Chinese))
    [9]
    WU T S, KARKOUB M, YU W S, et al. Anti-sway tracking control of tower cranes with delayed uncertainty using a robust adaptive fuzzy control[J]. Fuzzy Sets and Systems,2016,290(5): 118-137.
    [10]
    CHENG K H. Adaptive B-spline-based fuzzy sliding-mode control for an auto-warehousing crane system[J]. Applied Soft Computing,2016,48(11): 476-490.
    [11]
    LEE L H, HUANG P H, SHIH Y C, et al. Parallel neural network combined with sliding mode control in overhead crane control system[J].Journal of Vibration and Control,2014,20(5): 749-760.
    [12]
    BENHELLAL B, HAMERLAIN M, OUIGUINI R, et al. Decoupled adaptive neuro-fuzzy sliding mode control applied in a 3D crane system[J]. Journal of Electrical Engineering,2014,14(1): 313-319.
    [13]
    QIAN Y Z, FANG Y C, LU B. Adaptive repetitive learning control for an offshore boom crane[J]. Automatica,2017,82(82): 21-28.
    [14]
    HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics,2009,56(3): 900-906.
    [15]
    李荣辉. 欠驱动水面船舶航迹自抗扰控制研究[D]. 博士学位论文. 大连: 大连海事大学, 2013.(LI Ronghui. Active disturbance rejction based tracking control of underactuated surface ships[D]. PhD Thesis. Dalian: Dalian Maritime University, 2013.(in Chinese))
    [16]
    王紫东. 基于欠驱动性的双足机器人高能效行走控制研究[D]. 博士学位论文. 杭州: 浙江大学, 2016.(WANG Zidong. Control strategy of biped robots based on underactuation[D]. PhD Thesis. Hangzhou: Zhejiang University, 2016.(in Chinese))
    [17]
    RAMIREZ N M, SIRA R H, GARRIDO M R, et al, Linear active disturbance rejection control of underactuated systems: the case of the Furuta pendulum[J]. ISA Transactions,2014,53(4): 920-928.
    [18]
    韩京清. 自抗扰控制技术: 估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008.(HAN Jingqing. Active Disturbance Rejection Control Technique: the Technique for Estimating and Compensating the Uncertainties [M]. Beijing: National Defense Industry Press, 2008.(in Chinese))
    [19]
    GAO Z Q. Scaling and bandwidth-parameterization based controller tuning[C]// Proceedings of the American Control Conference . Denver, Colorado, USA, 2003.
    [20]
    深圳市元创兴科技有限公司. 直线倒立摆实验指导书[M]. 深圳: 深圳市元创兴科技有限公司, 2008.(Shenzhen Yuan Chuang Hsing Technology Co Ltd. Experimental Guide for Straight Inverted Pendulum [M]. Shenzhen: Shenzhen Yuan Chuang Hsing Technology Co Ltd, 2008.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (858) PDF downloads(197) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return