ZOU Sen, LIU Yong, WANG Qi. Numerical Study on Passive Control of Airfoil-Vortex Interaction Based on Slotted Leading Edges[J]. Applied Mathematics and Mechanics, 2019, 40(10): 1159-1168. doi: 10.21656/1000-0887.400028
Citation: ZOU Sen, LIU Yong, WANG Qi. Numerical Study on Passive Control of Airfoil-Vortex Interaction Based on Slotted Leading Edges[J]. Applied Mathematics and Mechanics, 2019, 40(10): 1159-1168. doi: 10.21656/1000-0887.400028

Numerical Study on Passive Control of Airfoil-Vortex Interaction Based on Slotted Leading Edges

doi: 10.21656/1000-0887.400028
Funds:  The National Natural Science Foundation of China(11962018)
  • Received Date: 2019-01-10
  • Rev Recd Date: 2019-01-24
  • Publish Date: 2019-10-01
  • The slotting method is a simple flow passive control method. In order to search for a passive control method that can effectively mitigate the bladevortex interaction effects, a NACA 0012 airfoil was used as the research object, 4 kinds of the NACA 0012 airfoil models with differently slotted leading edges were designed. Numerical simulations of 2D parallel bladevortex interaction (airfoilvortex interaction) were performed for the slotted airfoils and the benchmark airfoil to examine the effects of the freestream velocity, the vortex strength and the disturbing distance on the lift coefficient. The results show that, the slotted leading edge can mitigate the airfoilvortex interaction effects, but with an influence on the lift coefficient. The vertical cavity with a width of 2.5% of the chord length can obviously mitigate the airfoilvortex interaction effects with low lift coefficient penalties, having a wide application range.
  • loading
  • [1]
    史勇杰, 招启军, 徐国华. 旋翼桨-涡干扰气动特性计算及参数影响研究[J]. 航空学报, 2010,31(6): 1106-1114.(SHI Yongjie, ZHAO Qijun, XU Guohua. Numerical calculation and parametric study of aerodynamics of rotor blade-vortex interaction[J]. Acta Aeronautica et Astronautica Sinica,2010,31(6): 1106-1114.(in Chinese))
    [2]
    倪同兵, 招启军, 马砾. 基于IBC方法的旋翼BVI噪声主动控制机理[J]. 航空学报, 2017,38(7): 120-132.(NI Tongbing, ZHAO Qijun, MA Li. Active control mechanism of rotor BVI noise based on IBC method[J]. Acta Aeronautica et Astronautica Sinica,2017,38(7): 120-132.(in Chinese))
    [3]
    NI Tongbing, ZHAO Qijun, MA Li. Parameter influence analyses of IBC active control on rotor BVI noise based upon an integrated CFD/CSD/FW-Hpds method[J]. Acta Aerodynamica Sinica,2018,〖STHZ〗 36(3): 417-431.
    [4]
    BROOKS T F, BOOTH E R, JOLLY J R, et al. Technical notes: reduction of blade-vortex interaction noise through higher harmonic pitch control[J]. Journal of the American Helicopter Society,1990,35(1): 86-91.
    [5]
    王亮权, 徐国华, 史勇杰, 等. 高阶谐波控制对旋翼桨-涡干扰载荷和噪声的影响[J]. 航空学报, 2017,38(7): 65-74.(WANG Liangquan, XU Guohua, SHI Yongjie, et al. Influence of higher harmonic control on airload and acoustics of rotor blade-vortex interaction[J]. Acta Aeronautica et Astronautica Sinica,2017,38(7): 65-74.(in Chinese))
    [6]
    DIETERICH O, ENENKL B, ROTH D. Trailing edge flaps for active rotor control-aeroelastic characteristics of the ADASYS rotor system[C]//Annual Forum Proceeding-American Helicopter Society,2006.
    [7]
    ZHANG M M, XU J Z. Active control of fluctuating pressure induced by blade-vortex interaction[J]. Science China Technological Sciences,2011,54(4): 862-868.
    [8]
    BROOKS T F. Studies of blade-vortex interaction noise reduction by rotor blade modification[C]// Proceedings of the 1993 National Conference on Noise Control,1993: 57-66.
    [9]
    TANGLER J L, WOHLFELD R M, MILEY S J. An experimental investigation of vortex stability, tip shapes, compressibility and noise for hovering model rotors[R]. Washington: NASA, 1973.
    [10]
    史勇杰, 苏大成, 徐国华. 桨叶气动外形对直升机桨-涡干扰噪声影响研究[J]. 南京航空航天大学学报, 2015,47(2): 235-242.(SHI Yongjie, SU Dacheng, XU Guohua. Research on influence of shape parameters on blade-vortex interaction noise of helicopter rotor[J]. Nanjing University of Aeronautics and Astronautics,2015,47(2): 235-242.(in Chinese))
    [11]
    孙传伟, 陆洋, 高正. 锯齿状桨尖旋翼悬停气动特性试验研究[J]. 空气动力学学报, 2001,19(4): 446-451.(SUN Chuanwei, LU Yang, GAO Zheng. An experiment of hover performance with new shape blade tip[J]. Acta Aerodynamica Sinica,2001,19(4): 446-451.(in Chinese))
    [12]
    DAHDI B, MAMOU M, KHALID M, et al. Investigation of skin porosity damping effects on free stream disturbance induced unsteady wing loads[J]. Aeronautical Journal,2012,116(1184): 1041-1060.
    [13]
    ELJACK E, ALQADI I, KHALID M. Numerical simulation of surface porosity in presence of wing-vortex interaction[J]. Aircraft Engineering and Aerospace Technology: an International Journal,2015,87(5): 443-453.
    [14]
    李博, 钱红玉, 张立, 等. 叶片穿孔小型轴流风扇气动性能的研究[J]. 浙江理工大学学报, 2013,30(1): 76-80.(LI Bo, QIAN Hongyu, ZHANG Li, et al. Aerodynamic performance study on small axial fan with perforation blades[J]. Journal of Zhejiang Institute of Science and Technology,2013,30(1): 76-80.(in Chinese))
    [15]
    张宗茂, 顾熙棠. 降低轴流风机噪声的两种方法[J]. 宁波大学学报, 1989,2(1): 79-87.(ZHANG Zongmao, GU Xitang. Two methods on the noise reduction in axial flow fans[J]. Journal of Ningbo University,1989,2(1): 79-87.(in Chinese))
    [16]
    LEE S. Reduction of blade-vortex interaction noise through porous leading edge[J]. AIAA Journal,1994,32(3): 480-488.
    [17]
    LEE S, BERSHADER D. Head-on parallel blade-vortex interaction[J]. AIAA Journal,2015,32(1): 16-22.
    [18]
    RENZONI P. Discrete vortex modeling of a blade-vortex interaction[D]. PhD Thesis. Troy: Rensselaer Polytechnic Institute, 1987.
    [19]
    LEVERTON J W, TAYLOR F W. Helicopter blade slap[J]. Journal of Sound & Vibration,1966,4(3): 8345-8357.
    [20]
    LI C G, MAA J P Y. Multi-relaxation-time lattice Boltzmann simulations of lid driven flows using graphics processing unit[J]. Applied Mathematics & Mechanics(English Edtion),2017,38(5): 1-16.
    [21]
    崔桂香, 许春晓, 张兆顺. 湍流大涡数值模拟进展[J]. 空气动力学学报, 2004,22(2): 121-129.(CUI Guixiang, XU Chunxiao, ZHANG Zhaoshun. Progress in large eddy simulation of turbulent flows[J]. Acta Aerodynamica Sinica,2004,22(2): 121-129.(in Chinese))
    [22]
    CHEN L, YU Y, HOU G. Sharp-interface immersed boundary lattice Boltzmann method with reduced spurious-pressure oscillations for moving boundaries[J]. Physical Review E,2013,87(5): 053306.
    [23]
    NIU X D, SHU C, CHEW Y T, et al. A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows[J]. Physics Letters A,2006,354(3): 173-182.
    [24]
    STRAUS J, RENZONI P, MAYLE R E. Airfoil pressure measurements during a blade vortex interaction and a comparison with theory[J]. AIAA Journal,1990,28(2): 222-228.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (900) PDF downloads(353) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return