KONG Wei, LI Jia. Intermittent Turbulence Characteristics in the Stokes Layer for a Transitional Reynolds Number[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1171-1182. doi: 10.21656/1000-0887.400382
Citation: KONG Wei, LI Jia. Intermittent Turbulence Characteristics in the Stokes Layer for a Transitional Reynolds Number[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1171-1182. doi: 10.21656/1000-0887.400382

Intermittent Turbulence Characteristics in the Stokes Layer for a Transitional Reynolds Number

doi: 10.21656/1000-0887.400382
Funds:  The National Natural Science Foundation of China(11702107)
  • Received Date: 2019-12-27
  • Rev Recd Date: 2020-09-08
  • Publish Date: 2020-10-01
  • The characteristics of intermittent turbulence induced by wall surface roughness in a finite Stokes layer were investigated numerically, including the velocity gradient at the wall, the velocity profile and the Reynolds stress, etc., with a transitional Reynolds number Re=495.The results show that, the velocity profile does not follow the logarithmic law in most phases, but does only in some rare phases during the decelerating stage. The comparison between the Reynolds stress and the result in the case of the incompressible boundary layer indicates that, the Reynolds stress distribution in the turbulence stage is similar to that in the case of the incompressible boundary layer, including the peak amplitude and the peak position, but there is significant discrepancy in the turbulence core region between the 2 cases. Above characteristics reveal the strong nonequilibrium behaviors of intermittent turbulence in the Stokes layer.
  • loading
  • [1]
    HINO M, SAWAMOTO M, TAKASU S. Experiments on transition to turbulence in an oscillatory pipe flow[J]. Journal of Fluid Mechanics,1976,75(2): 193-207.
    [2]
    HINO M, KASGUWAYANAGI M, NAKAYAMA A, et al. Experiments on the turbulence statistics and the structure of a reciprocating oscillatory flow[J]. Journal of Fluid Mechanics,1983,131(1): 363-400.
    [3]
    JENSEN B L, SUMER B M, FREDSOE J. Turbulent oscillatory boundary layers at high Reynolds numbers[J]. Journal of Fluid Mechanics,1989,206(1): 265-297.
    [4]
    AKHAVAN R, KAMM R D, SHAPIRO A H. An investigation of transition to turbulence in bounded oscillatory Stokes flows, part 1: experiments[J]. Journal of Fluid Mechanics,1989,225: 395-422.
    [5]
    HSU C T, LU X, KWAN M K. LES and RANS studies of oscillating flows over flat plate[J]. Journal of Engineering Mechanics,2000,188: 186-193.
    [6]
    SCOTTI A, PIOMELLI U. Numerical simulation of pulsating turbulent channel flow[J]. Physics of Fluids,2001,13(5): 1367-1384.
    [7]
    LOHMANN I P, FREDSΦE J, SUMER B M, et al. Large eddy simulation of the ventilated wave boundary layer[J]. Journal of Geophysical Research,2006,111: 21-39.
    [8]
    SALON S, ARMENIO V, CRISE A. A numerical investigation of the Stokes boundary layer in the turbulent regime[J]. Journal of Fluid Mechanics,2007,570: 253-296.
    [9]
    ZHANG Q. Large eddy simulation of oscillatory boundary layer at Reδ =3 500[J]. Journal of Hydrodynamics,2010,22(5): 160-165.
    [10]
    SHENG Y P. Hydraulic applications of a second-order closure model of turbulent transport[C]// Applying Research to Hydraulic Practice, ASCE . 2010.
    [11]
    JUSTESEN P. A note on turbulence calculations in the wave boundary layer[J]. Journal of Hydraulic Research,1991,29(5): 699-711.
    [12]
    SAJJADI S G, WAYWELL M N. Application of roughness-dependent boundary conditions to turbulent oscillatory flows[J]. International Journal of Heat and Fluid Flow,1997,18(4): 368-375.
    [13]
    THAIS L, CHAPALAIN G, SMAOUI H. Reynolds number variation in oscillatory boundary layers, part Ⅰ: purely oscillatory motion[J]. Coastal Engineering,1999,36(2): 111-146.
    [14]
    FOTI E, SCANDURA P A. A low Reynolds number k-ε model validated for oscillatory flows over smooth and rough wall[J]. Coastal Engineering,2004,51(2): 173-184.
    [15]
    SANA A, GHUMMAN R A, TANAKA H. Modeling of a rough-wall oscillatory boundary layer using two-equation turbulence models[J]. Journal of Hydraulic Engineering, 2009,135(1): 60-65.
    [16]
    SHOME B. Numerical study of oscillating boundary layer flow over a flat plate using k-kL-ω turbulence model[J]. International Journal of Heat and Fluid Flow,2013,42: 131-138.
    [17]
    VITTORI G, VERZICCO R. Direct simulation of transition in an oscillatory boundary layer[J]. Journal of Fluid Mechanics,1998,371: 207-232.
    [18]
    孔玮, 罗纪生. 壁面的表面粗糙度引起的Stokes层亚临界不稳定性[J]. 航空动力学报, 2016,31(10): 2500-2506.(KONG Wei, LUO Jisheng. Subcritical instability of a finite Stokes layer induced by wall surface roughness[J]. Journal of Aerospace Power,2016,〖STHZ〗 31(10): 2500-2506.(in Chinese))
    [19]
    KONG W, LUO J S. Influence of three-dimensional wall roughness on the transition of a finite Stokes layer[J]. European Journal of Mechanics B: Fluids,2017,62: 12-20.
    [20]
    唐洪涛. 不可压缩平板边界层从层流突变为湍流的机理及湍流特性[D]. 博士学位论文. 天津: 天津大学, 2007.(TANG Hongtao. The mechanism of breakdown in laminar-turbulent transition and the characteristics of turbulence in an incompressible boundary layer on a flat plate[D]. PhD Thesis. Tianjin: Tianjin University, 2007.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3464) PDF downloads(284) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return