Volume 42 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
TAN Xueming, WANG Ruifeng, GUO Xiaojun, MENG Weihua, GUO Weiguo. Research on Failure Characteristics and Failure Models for Superalloy GH4169[J]. Applied Mathematics and Mechanics, 2021, 42(8): 803-812. doi: 10.21656/1000-0887.410299
Citation: TAN Xueming, WANG Ruifeng, GUO Xiaojun, MENG Weihua, GUO Weiguo. Research on Failure Characteristics and Failure Models for Superalloy GH4169[J]. Applied Mathematics and Mechanics, 2021, 42(8): 803-812. doi: 10.21656/1000-0887.410299

Research on Failure Characteristics and Failure Models for Superalloy GH4169

doi: 10.21656/1000-0887.410299
Funds:

The National Natural Science Foundation of China(11872051)

  • Received Date: 2020-09-30
  • Rev Recd Date: 2021-04-02
  • Available Online: 2021-08-14
  • The material property tests of superalloy GH4169 were carried out under different stress triaxialities (-0.33~0.33), different strain rates (0.001~5 000 s-1) and different temperatures (293~1 073 K). Under the framework of the Johnson-Cook (JC) failure model, the uncertainty of fitting results of the stress triaxiality term in the JC failure model and the limitation of the linear relationship description between the strain rate and the failure strain in the modified form proposed in previous literatures were studied. With the proposed method of calibrating specific parameters and the strain rate effect index function of coupled stress triaxiality, a phenomenological modified failure model was established. Based on the test results of superalloy GH4169, the parameters of the modified failure model and the JC model were calibrated. The results show that, the failure strain of GH4169 exhibits different strain rate effects under different stress triaxialities; the modified failure model can better describe the failure behavior of GH4169 than the traditional JC model; at the same time ensure non-negativity of the failure strain.
  • loading
  • 《中国航空材料手册》编辑委员会. 中国航空材料手册: 2卷[M]. 北京: 中国标准出版社, 1989.(Editorial Committee ofChina Aeronautical Materials Handbook. China Aeronautical Materials Handbook: Vol2[M]. Beijing: China Standards Press, 1989.(in Chinese))
    [2]STUWE H P, ORTNER B. Recrystallization in hot working and creep[J].Metal Science Journal,1974,8(1): 161-167.
    [3]杜金辉, 邓群, 曲敬龙, 等. 我国航空发动机用GH4169合金现状与发展[C]//中国金属学会. 第八届中国钢铁年会论文集. 北京: 冶金工业出版社, 2011: 1-5.(DU Jinhui, DENG Qun, QU Jinglong, et al. Present situation and development of GH4169 alloy for aeroengine in China[C]//The Chinese Society for Metals.Proceedings of the8th China Iron and Steel Annual Meeting. Beijing: Metallurgical Industry Press, 2011: 1-5.(in Chinese))
    [4]JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J].Engineering Fracture Mechanics,1985,21(1): 31-48.
    [5]孟卫华, 王建军, 李坚, 等. 高温合金GH4133B动态本构模型与失效模型研究[J]. 应用数学和力学, 2018,39(6): 681-688.(MENG Weihua, WANG Jianjun, LI Jian, et al. Research on dynamic behavior and a failure model for GH4133B superalloy[J].Applied Mathematics and Mechanics,2018,39(6): 681-688.(in Chinese))
    [6]BORVIK T, HOPPERSTAD O S, BERSTAD T, et al. A computational model of viscoplasticity and ductile damage for impact and penetration[J].European Journal of Mechanics A: Solids,2001,20(5): 685-712.
    [7]CHOCRON S, ERICE B, ANDERSON C E. A new plasticity and failure model for ballistic application[J].International Journal of Impact Engineering,2011,38(8): 755-764.
    [8]BRVIK T, LANGSETH M, HOPPERSTAD O S, et al. Ballistic penetration of steel plates[J].International Journal of Impact Engineering,1999,22(9/10): 855-886.
    [9]COCKROFT M G, LATHAM D J. Ductility and the workability of metals[J].Journal of the Institute of Metals,1968,96: 33-39.
    [10]BAI Y, WIERZBICKI T. A new model of metal plasticity and fracture with pressure and Lode dependence[J].International Journal of Plasticity,2008,24(6): 1071-1096.
    [11]RICE J R, TRACEY D M. On the ductile enlargement of voids in triaxiality stress fields[J].Journal of the Mechanics and Physics of Solids,1969,17(3): 201-217.
    [12]SCIUVA M D, FROLA C, SALVANO S. Low and high velocity impact on Inconel 718 casting plates: ballistic limit and numerical correlation[J].International Journal of Impact Engineering,2003,28(8): 849-876.
    [13]GURSON A L. Continuum theory of ductile rupture by void nucleation and growth, part Ⅰ: yield criteria and flow rules for porous ductile media[J].Journal of Engineering Materials and Technology,1977,99(1): 2-15.
    [14]TVERGAARD V, NEEDLEMAN A. Analysis of the cup-cone fracture in a round tensile bar[J].Acta Metallurgica,1984,32(1): 157-169.
    [15]韩蒙, 李迪, 孙彩凤, 等. 基于修正GTN模型的双相钢断裂失效判据研究[J]. 塑性工程学报, 2020,27(1): 117-122.(HAN Meng, LI Di, SUN Caifeng, et al. Study on fracture failure criterion of dual phase steel based on modified GTN model[J].Journal of Plasticity Engineering,2020,27(1): 117-122.(in Chinese))
    [16]CAO J, LI F, MA X, et al. Study of fracture behavior for anisotropic 7050-T7451 high-strength aluminum alloy plate[J].International Journal of Mechanical Sciences,2017,128/129: 445-458.
    [17]RAZANICA S, LARSSON R, JOSEFSON B L. A ductile fracture model based on continuum thermodynamics and damage[J].Mechanics of Materials,2019,139: 103197.
    [18]LIANG J Y, LI Y M. A failure criterion considering stress angle effect[J].Rock Mechanics and Rock Engineering,2019,52: 1257-1263.
    [19]BRIDGMAN P W.Studies in Large Plastic Flow and Fracture[M]. Harvard University Press, 1964.
    [20]MIRONE G. The dynamic effect of necking in Hopkinson bar tension tests[J].Mechanics of Materials,2013,58: 84-96.
    [21]FARAHANI H K, KETABCHI M, ZANGENEH S, et al. Determination of Johnson-Cook plasticity model parameters for Inconel 718[J].Journal of Materials Engineering & Performance,2017,26(2): 1-10.
    [22]ALGARNI M, BAI Y, CHOI Y. A study of Inconel 718 dependency on stress triaxiality and Lode angle in plastic deformation and ductile fracture[J].Engineering Fracture Mechanics,2015,147: 140-157.
    [23]BORVIK T, HOPPERSTAD O S, BERSTAD T, et al. Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses, part Ⅱ: numerical simulations[J].International Journal of Impact Engineering,2002,27(1): 37-64.
    [24]ARIAS A, RODRIGUEZ-MARTINEZ J A, RUSINEK A. Numerical simulations of impact behaviour of thin steel plates subjected to cylindrical, conical and hemispherical non-deformable projectiles[J].Engineering Fracture Mechanics,2008,75(6): 1635-1656.
    [25]WILKINS M L, STREIT R D, REAUGH J E. Cumulative-strain-damage model of ductile fracture:simulation and prediction of engineering fracture tests: UCRL-53058[R]. Lawrence Livermore National Laboratory, Science Applications Inc, 1980. DOI: 10.2172/6628920.
    [26]FRAS T, COLARD L, LACH E, et al. Thick AA7020-T651 plates under ballistic impact of fragment-simulating projectiles[J].International Journal of Impact Engineering,2015,86: 336-353.
    [27]ERICE B, GLVEZ F. A coupled elastoplastic-damage constitutive model with Lode angle dependent failure model[J].International Journal of Solids and Structures,2014,51(1): 93-110.
    [28]XUE L. Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading[J].International Journal of Solids and Structures,2007,44(16): 5163-5181.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (675) PDF downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return