Citation: | BAO Liping, LI Ruixiang, WU Liqun. Singularly Perturbed and Soliton Solutions to a Class of KdV-Burgers Equations[J]. Applied Mathematics and Mechanics, 2021, 42(9): 948-957. doi: 10.21656/1000-0887.420011 |
王建勇, 程雪苹, 曾莹, 等. Korteweg-de Vries方程的准孤立子解及其在离子声波中的应用[J]. 物理学报,2018,67(11): 110201.(WANG Jianyong, CHENG Xueping, ZENG Ying, et al. Quasi-soliton solution of Korteweg-de Vries equation and its application in ion acoustic waves[J].Acta Physica Sinica,2018,67(11): 110201.(in Chinese))
|
[2]王建勇. KdV方程的孤子-椭圆周期波解及其准孤立子行为[J]. 宁波大学学报(理工版), 2020,33(5): 62-67.(WANG Jianyong. Soliton-cnoidal wave solution and its quasi-soliton behavior to the Korteweg-de Vries equation[J].Journal of Ningbo University(Natural Science & Engineering Edition),2020,33(5): 62-67.(in Chinese))
|
[3]KUDRYASHOV N A. Traveling wave reduction of the modified KdV hierarchy: the lax pair and the first integrals[J].Communications in Nonlinear Science and Numerical Simulation,2019,73: 472-480.
|
[4]王慧敏. (3+1)维修正KdV-Zakharov-Kuznetsov方程孤波的格子Boltzmann模拟[J].数码世界, 2020(10): 239-240.(WANG Huiming. The lattice Boltzmann simulation of solitary waves for the (3+1) dimensional modified KdV-Zakharov-Kuznetsov equation[J].Digital Space,2020(10): 239-240.(in Chinese))
|
[5]ZHANG G Q, YAN Z Y. Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions[J].Physica D: Nonlinear Phenomena,2020,402: 132170.
|
[6]DUBROVIN B, YANG D, ZAGIER D. On tau-functions for the KdV hierarchy[J].Selecta Mathematica,2021,27(1). DOI: 10.1007/s00029-021-00620-x.
|
[7]CHEN K, DENG X, LOU S. Solutions of nonlocal equations reduced from the AKNS hierarchy[J].Studies in Applied Mathematics,2018,141(1): 113-141.
|
[8]BURYAK A. Open intersection numbers and the wave function of the KdV hierarchy[J].Moscow Mathematical Journal,2016,16 (1): 27-44.
|
[9]IGNATYEV M Y. On the solutions of some boundary value problems for the general KdV equation[J].Mathematical Physics, Analysis and Geometry,2014,17: 493-509.
|
[10]DAI C Q, WANG Y Y, FAN Y, et al. Interactions between exotic multi-valued solitons of the (2+1)-dimensional Korteweg-de Vries equation describing shallow water wave[J].Applied Mathematical Modelling,2020,80: 506-515.
|
[11]KUDRYASHOV N A. Solitary wave solutions of hierarchy with non-local nonlinearity[J].Applied Mathematics Letters,2020,103: 106155.
|
[12]ZHUANG K G, DU Z J, LIN X J. Solitary waves solutions of singularly perturbed higher-order KdV equation via geometric singular perturbation method[J].Nonlinear Dynamics,2015,80: 629-635.
|
[13]XU Y, DU Z J, WEI L. Geometric singular perturbation method to the existence and asymptotic behavior of traveling waves for a generalized Burgers-KdV equation[J].Nonlinear Dynamics,2016,83: 65-73.
|
[14]CHEN S S, TIAN B, LIU L, et al. Conservation laws, binary Darboux transformations and solitons for a higher-order nonlinear Schrödinger system[J].Chaos, Solitons & Fractals,2019,118: 337-346.
|
[15]BASKONUS H M, SULAIMAN T A, BULUT H, et al. Investigations of dark, bright, combined dark-bright optical and other soliton solutions in the complex cubic nonlinear Schrödinger equation with δ-potential[J].Superlattices and Microstructures,2018,115: 19-29.
|
[16]ESEN A, SULAIMAN T A, BULUT H, et al. Optical solitons to the space-time fractional (1+1)-dimensional coupled nonlinear Schrödinger equation[J].Optik,2018,167: 150-156.
|
[17]PRIYA N V, SENTHILVELAN M. N-bright-bright and N-dark-dark solitons of the coupled generalized nonlinear Schrödinger equations[J].Communications in Nonlinear Science and Numerical Simulation,2016,36: 366-377.
|
[18]BENDAHMANE I, TRIKI H, BISWAS A, et al. Bright, dark and W-shaped solitons with extended nonlinear Schrödinger’s equation for odd and even higher-order terms[J].Superlattices and Microstructures,2018,114: 53-61.
|
[19]KUMAR S, NIWAS M, HAMID I. Lie symmetry analysis for obtaining exact soliton solutions of generalized Camassa-Holm-Kadomtsev-Petviashvili equation[J].International Journal of Modern Physics B,2021,35(2): 2150028.
|
[20]BEKIR A, ZAHRAN E H M, GUNER O. Soliton solutions of the (3+1)-dimensional Yu-Toda-Sassa-Fukuyama equation by the new approach and its numerical solutions[J].International Journal of Modern Physics B,2021,35(2): 2150025.
|
[21]FU H M, RUAN C Z, HU W Y. Soliton solutions to the nonlocal Davey-Stewartson Ⅲ equation[J].Nature Communications,2021,35(1): 2150026.
|
[22]钱祖文. 非线性声学[M]. 2版. 北京: 科学出版社, 2009.(QIAN Zuwen.Non-Linear Acoustics[M]. 2nd ed. Beijing: Science Press, 2009.(in Chinese))
|
[23]叶彦谦. 常微分方程讲义[M]. 北京: 人民教育出版社, 1979.(YE Yanqian.Handout for Ordinary Differential Equations[M]. Beijing: People’s Education Press, 1979.(in Chinese))
|