Volume 42 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
LUO You, ZHU Senlin, CAO Bing, JIANG Chenjuan. A “Standard Cross-Section” Method for the Calculation of Riverbed and Bank Shear Stresses[J]. Applied Mathematics and Mechanics, 2021, 42(9): 915-923. doi: 10.21656/1000-0887.420048
Citation: LUO You, ZHU Senlin, CAO Bing, JIANG Chenjuan. A “Standard Cross-Section” Method for the Calculation of Riverbed and Bank Shear Stresses[J]. Applied Mathematics and Mechanics, 2021, 42(9): 915-923. doi: 10.21656/1000-0887.420048

A “Standard Cross-Section” Method for the Calculation of Riverbed and Bank Shear Stresses

doi: 10.21656/1000-0887.420048
  • Received Date: 2021-02-22
  • Rev Recd Date: 2021-06-25
  • Available Online: 2021-09-29
  • Seeking for the “zero shear stress dividing line” and quantifying the apparent shear stress at the interface between adjacent sub-regions are 2 main methods to calculate the riverbed and bank shear stresses. To simplify the empirical expression for apparent shear stresses along the dividing line, a “momentum transfer-equilibrium deviation” (MTED) assumption that the apparent shear stress can be calculated based on the deviation of momentum transportation from its equilibrium value, was proposed. A “standard cross-section” concept was applied to determine the equilibrium value. All the rectangular and trapezoidal cross-sections can be correlated with certain standard cross-sections. Based on the MTED assumption and the concept of standard cross-sections, the empirical expressions for the apparent shear stresses along the dividing line and the bed and bank boundary shear stresses, were established. More than 200 data from different lab experiments were used to verify different methods. The results show that, the proposed method improves the calculation accuracy and can be applied to both rectangular and trapezoidal cross-sections, as well as to both smooth and rough channels.
  • loading
  • [2]YUEN K W H. A study of boundary shear stress, flow resistance and momentum transfer in open channels with simple and compound trapezoidal cross sections[D]. PhD Thesis. Birmingham: University of Birmingham, 1989.
    RAJARATNAM N, MURALIDHAR D. Boundary shear stress distribution in rectangular open channels[J].La Houille Blanche,1969,1(6): 603-610.
    [3]CACQUERAY N D, HARAGREAVES D M, MORVAN H P. A computational study of shear stress in smooth rectangular channels[J].Journal of Hydraulic Research,2009,47(1): 50-57.
    [4]ANSARI K, MORVAN H P, HARGREAVES D M. Numerical investigation into secondary currents and wall shear in trapezoidal channels[J].Journal of Hydraulic Engineering,2011,137(4): 432-440.
    [5]KHODASHENAS S R, ABDERREZZAK K E K, PAQUIER A. Boundary shear stress in open channel flow: a comparison among six methods[J].Journal of Hydraulic Research,2008,46(5): 598-609.
    [6]KNIGHT D W, DEMETRIOU J D, HAMED M E. Boundary shear in smooth rectangular channels[J]. Journal of Hydraulic Engineering,1984,110(4): 405-422.
    [7]FLINTHAM T, CARLING P. The prediction of mean bed and wall boundary shear in uniform and compositely rough channels[C]//International Conference on River Regime, Hydraulics Research Limited.Wallingford, Oxon, UK, 1988.
    [8]KHOZANI Z S, BONAKDARI H, ZAJI A H. Using two soft computing methods to predict wall and bed shear stress in smooth rectangular channels[J].Applied Water Science,2017,7(7): 3973-3983.
    [9]MARTINEZ-VAZQUEZ P, SHARIFI S. Modelling boundary shear stress distribution in open channels using a face recognition technique[J].Journal of Hydroinformatics,2017,19(2): 157-172.
    [10]LEIGHLY J B. Toward a theory of the morphologic significance of turbulence in the flow of water in streams[J].Progress in Physical Geography,1932,6(1): 1-22.
    [11]KEULEGAN G H. Laws of turbulent flow in open channels[J].Journal of Research of the National Bureau of Standards,1938,21: 708-741.
    [12]EINSTEIN H A. Formulas for the transportation of bed load[J].Transactions of ASCE,1942,107(1): 561-597.
    [13]YANG S Q, LIM S Y, GUO J. Mechanism of energy transportation and turbulent flow in a 3D channel[J].Journal of Hydraulic Engineering,1999,125(3): 684-692.
    [14]YANG S Q, LIM S Y. Boundary shear stresses distributions in smooth rectangular open channel flows[J].Proceedings of the Institution of Civil Engineers: Water Maritime and Energy,1998,130(3): 163-173.
    [15]YANG S Q, LIM S Y. Boundary shear stress distributions in trapezoidal channels[J].Journal of Hydraulic Research,2005,43(1): 98-102.
    [16]HAN Y, YANG S Q, DHARMASIRI N, et al. Experimental study of smooth channel flow division based on velocity distribution[J].Journal of Hydraulic Engineering,2015,141(4): 06014025.
    [17]HAN Y, YANG S Q, SIVAKUMAR M, et al. Flow partitioning in rectangular open channel flow[J].Mathematical Problems in Engineering,2018,2018: 6491501.
    [18]YANG S Q, YU J X, WANG Y Z. Estimation of diffusion coefficients, lateral shear stress, and velocity in open channels with complex geometry[J].Water Resource Research,2004,40(5): W05202. DOI: 10.1029/2003WR002818.
    [19]SHIONO K, KNIGHT D W. Turbulent open-channel flows with variable depth across the channel[J].Journal of Fluid Mechanics,1991,222: 617-646.
    [20]GUO J, JULIEN P Y. Shear stress in smooth rectangular open-channel flows[J].Journal of Hydraulic Engineering,2005,131(1): 30-37.
    [21]KABIRI-SAMANI A, FARSHI F, CHAMANI M R. Boundary shear stress in smooth trapezoidal open channel flows[J].Journal of Hydraulic Engineering,2013,139(2): 205-212.
    [22]JAVID S, MOHAMMADI M. Boundary shear stress in a trapezoidal channel[J].International Journal of Engineering,2012,25(4): 323-332.
    [23]WORMLEATON P R, MERRETT D J. An improved method of calculation for steady uniform flow in prismatic main channel/flood plain sections[J].Journal of Hydraulic Research,1990,28(2): 157-174.
    [24]PRINOS P, TOWNSEND R D. Comparison of methods for predicting discharge in compound open channels[J].Advances in Water Resources,1984,7(4): 180-187.
    [25]MORETA P J, MARTIN-VIDE J P. Apparent friction coefficient in straight compound channels[J].Journal of Hydraulic Research,2010,48(2): 169-177.
    [26]CHEN Z, CHEN Q, JIANG L. Determination of apparent shear stress and its application in compound channels[J].Procedia Engineering,2016,154: 459-466.
    [27]BRUNDRETT E, BAINES W D. The production and diffusion of vorticity in duct flow[J].Journal of Fluid Mechanics,1964,19: 375-394.
    [28]NEZU I. Turbulent structures in open-channel flows[D]. PhD Thesis. Japan: Kyoto University, 1977.
    [29]HUTHOFF F, ROOS P C, AUGUSTIJIN D C, et al. Interacting divided channel method for compound channel flow[J]. Journal of Hydraulic Engineering,2008,134(8): 1158-1165.
    [30]YANG K, LIU X, CAO S, et al. Stage-discharge prediction in compound channels[J].Journal of Hydraulic Engineering,2014,140(4): 06014001.
    [31]TANG X. A new apparent shear stress-based approach for predicting discharge in uniformly roughened straight compound channels[J].Flow Measurement and Instrumentation,2019,65: 280-287.
    [32]YANG Z, GAO W, HUAI W. Estimation of discharge in compound channels based on energy concept[J].Journal of Hydraulic Research,2012,50(1): 105-113.
    [33]TANG X. An improved method for predicting discharge of homogeneous compound channels based on energy concept[J].Flow Measurement and Instrumentation,2017,57: 57-63.
    [34]EINSTEIN H A. The bedload function for sediment transportation in open channel flows: 1026[R]. Technical Bulletin, 1950.
    [35]SILVA D A M F, BOLISETTI T. A method for the formulation of Reynolds number functions[J].Canadian Journal of Civil Engineering,2000,27(4): 829-833.
    [36]SECKIN G, SECKIN N, YURTAL R. Boundary shear stress analysis in smooth rectangular channels[J].Canadian Journal of Civil Engineering,2006,33(3): 336-342.
    [37]GHOSH S N, ROY N. Boundary shear distribution in open channel flow[J].Journal of the Hydraulics Division,1970,96(4): 967-994.
    [38]KNIGHT D W, MACDONALD J A. Hydraulic resistance of artificial strip roughness[J].Journal of the Hydraulics Division,1979,105(6): 675-690.
    [39]KNIGHT D W, MACDONALD J A. Open channel flow with varying bed roughness[J].Journal of the Hydraulics Division,1979,105(9): 1167-1183.
    [40]KNIGHT D W. Boundary shear in smooth and rough channels[J].Journal of the Hydraulics Division,1981,107(7): 839-851.
    [41]ALHAMID A I. Boundary shear stress and velocity distribution in differentially roughened trapezoidal open channels[D]. PhD Thesis. Birmingham: University of Birmingham, 1991.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (526) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return