Volume 43 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
WANG Qisheng, JIANG Jianping, LI Qingjun, JIANG Guoqi, DENG Zichen. Dynamic Analyses of the Assembling Process of Ultra-Large Structures With Space Robots[J]. Applied Mathematics and Mechanics, 2022, 43(8): 835-845. doi: 10.21656/1000-0887.420244
Citation: WANG Qisheng, JIANG Jianping, LI Qingjun, JIANG Guoqi, DENG Zichen. Dynamic Analyses of the Assembling Process of Ultra-Large Structures With Space Robots[J]. Applied Mathematics and Mechanics, 2022, 43(8): 835-845. doi: 10.21656/1000-0887.420244

Dynamic Analyses of the Assembling Process of Ultra-Large Structures With Space Robots

doi: 10.21656/1000-0887.420244
  • Received Date: 2021-08-17
  • Rev Recd Date: 2021-12-06
  • Available Online: 2022-07-05
  • Publish Date: 2022-08-01
  • Structural vibrations of ultra-large structures during on-orbit assembly should be prevented to the maximum extent, given the extreme structural flexibility and low natural frequencies. The assembling process was divided into 4 stages: the grasping stage, the position-attitude adjusting and stabilizing stage, the mounting stage and the crawling stage. For the mounting stage, the dynamics and control were addressed, and a collinear assembly trajectory planning method was proposed to prevent structural vibrations. First, a dynamic model for the on-orbit assembly system including the main structure, the space robot and the assembling structure, was established based on natural coordinate formulation and absolute node coordinate formulation. Second, the requirements of collinear assembly were transformed into a trajectory planning problem of the space robot. The distance from the space robot mass center to the main structure should remain fixed, which is the main idea of the proposed collinear assembly method. Numerical simulation results show that, the proposed assembly method can effectively prevent the transverse motions of the ultra-large structure and reduce the required grasping moment. Finally, the influences of the system parameters on the dynamic responses during the assembly process were studied. The work provides a theoretical basis for the on-orbit assembly of ultra-large spacecraft.

  • loading
  • [1]
    李庆军, 邓子辰, 王艳, 等. 空间太阳能电站的准对日定向姿态[J]. 宇航学报, 2019, 40(1): 29-40 doi: 10.3873/j.issn.1000-1328.2019.01.004

    LI Qingjun, DENG Zichen, WANG Yan, et al. Quasi-sun-pointing oriented attitude for solar power satellites[J]. Journal of Astronautics, 2019, 40(1): 29-40.(in Chinese) doi: 10.3873/j.issn.1000-1328.2019.01.004
    [2]
    丁继锋, 高峰, 钟小平, 等. 在轨建造中的关键力学问题[J]. 中国科学: 物理学 力学 天文学, 2019, 49(2): 50-57

    DING Jifeng, GAO Feng, ZHONG Xiaoping, et al. The key mechanical problems of on-orbit construction[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2019, 49(2): 50-57.(in Chinese)
    [3]
    沈晓凤, 曾令斌, 靳永强, 等. 在轨组装技术研究现状与发展趋势[J]. 载人航天, 2017, 23(2): 228-235 doi: 10.3969/j.issn.1674-5825.2017.02.016

    SHEN Xiaofeng, ZENG Lingbin, JIN Yongqiang, et al. Status and prospect of on-orbit assembly technology[J]. Manned Spaceflight, 2017, 23(2): 228-235.(in Chinese) doi: 10.3969/j.issn.1674-5825.2017.02.016
    [4]
    CHENG Z, HOU X, ZHANG X, et al. In-orbit assembly mission for the space solar power station[J]. Acta Astronautica, 2016, 129: 299-308. doi: 10.1016/j.actaastro.2016.08.019
    [5]
    王恩美, 邬树楠, 吴志刚. 在轨组装空间结构面向主动控制的动力学建模[J]. 力学学报, 2020, 52(3): 805-816 doi: 10.6052/0459-1879-19-375

    WANG Enmei, WU Shunan, WU Zhigang. Active-control-oriented dynamic modelling for on-orbit assembly space structure[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 805-816.(in Chinese) doi: 10.6052/0459-1879-19-375
    [6]
    CAO K, LI S, SHE Y, et al. Dynamics and on-orbit assembly strategies for an orb-shaped solar array[J]. Acta Astronautica, 2021, 178: 881-893. doi: 10.1016/j.actaastro.2020.10.030
    [7]
    WANG E, WU S, WU Z, et al. Distributed adaptive vibration control for solar power satellite during on-orbit assembly[J]. Aerospace Science and Technology, 2019, 94: 105378. doi: 10.1016/j.ast.2019.105378
    [8]
    荣吉利, 崔硕, 石文静, 等. 大型空间电站在轨展开与组装动力学与控制[J]. 宇航学报, 2021, 42(3): 295-304 doi: 10.3873/j.issn.1000-1328.2021.03.004

    RONG Jili, CUI Shuo, SHI Wenjing, et al. On-orbit deployment and assembly dynamics and control of large space power station[J]. Journal of Astronautics, 2021, 42(3): 295-304.(in Chinese) doi: 10.3873/j.issn.1000-1328.2021.03.004
    [9]
    CHEN T, WEN H, HU H, et al. Output consensus and collision avoidance of a team of flexible spacecraft for on-orbit autonomous assembly[J]. Acta Astronautica, 2016, 121: 271-281. doi: 10.1016/j.actaastro.2015.11.004
    [10]
    周志成, 王兴龙, 曲广吉. 大型空间柔性组合航天器动力学建模与控制[J]. 中国科学: 物理学 力学 天文学, 2019, 49(2): 62-73

    ZHOU Zhicheng, WANG Xinglong, QU Guangji. Dynamic modeling and control of large flexible spacecraft combination[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2019, 49(2): 62-73.(in Chinese)
    [11]
    朱安, 陈力. 配置柔顺机构空间机器人双臂捕获卫星操作力学模拟及基于神经网络的全阶滑模避撞柔顺控制[J]. 力学学报, 2019, 51(4): 1156-1169 doi: 10.6052/0459-1879-18-407

    ZHU An, CHEN Li. Mechanical simulation and full order sliding mode collision avoidance compliant control based on neural network of dual-arm space robot with compliant mechanism capturing satellite[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1156-1169.(in Chinese) doi: 10.6052/0459-1879-18-407
    [12]
    XU W, MENG D, CHEN Y, et al. Dynamics modeling and analysis of a flexible-base space robot for capturing large flexible spacecraft[J]. Multibody System Dynamics, 2014, 32(3): 357-401. doi: 10.1007/s11044-013-9389-0
    [13]
    MENG D, LU W, XU W, et al. Vibration suppression control of free-floating space robots with flexible appendages for autonomous target capturing[J]. Acta Astronautica, 2018, 151: 904-918. doi: 10.1016/j.actaastro.2018.07.044
    [14]
    LU Y, HUANG Z, ZHANG W, et al. Experimental investigation on automated assembly of space structure from cooperative modular components[J]. Acta Astronautica, 2020, 171: 378-387. doi: 10.1016/j.actaastro.2020.03.033
    [15]
    DUBOWSKY S, BONING P. Coordinated control of space robot teams for the on-orbit construction of large flexible space structures[J]. Advanced Robotics, 2010, 24(3): 303-323. doi: 10.1163/016918609X12619993300665
    [16]
    王兴龙, 周志成, 王典军, 等. 面向空间近距离操作的机械臂与服务卫星协同控制[J]. 宇航学报, 2020, 41(1): 101-109 doi: 10.3873/j.issn.1000-1328.2020.01.012

    WANG Xinglong, ZHOU Zhicheng, WAGN Dianjun, et al. Cooperative control of manipulator and servicing satellite for spatial proximal operation[J]. Journal of Astronautics, 2020, 41(1): 101-109.(in Chinese) doi: 10.3873/j.issn.1000-1328.2020.01.012
    [17]
    张凯锋, 周晖, 温庆平, 等. 空间站机械臂研究[J]. 空间科学学报, 2010, 30(6): 612-619 doi: 10.11728/cjss2010.06.612

    ZHANG Kaifeng, ZHOU Hui, WEN Qingping, et al. Review of the development of robotic manipulator for international space station[J]. Chinese Journal of Space Science, 2010, 30(6): 612-619.(in Chinese) doi: 10.11728/cjss2010.06.612
    [18]
    ESCALONA J L, HUSSIEN H A, SHABANA A A. Application of the absolute nodal coordinate formulation to multibody system dynamics[J]. Journal of Sound & Vibration, 1998, 214(5): 833-851.
    [19]
    SHABANA A. Dynamics of Multibody Systems[M]. 4th ed. Cambridge: Cambridge University Press, 2013.
    [20]
    陶红武, 谭跃刚, 陈建文. 四足机器人单腿系统及其跳跃柔顺控制的研究[J]. 机械设计与制造, 2022(1): 290-294 doi: 10.3969/j.issn.1001-3997.2022.01.065

    TAO Hongwu, TAN Yuegang, CHEN Jianwen. Research on the design and jump compliance control of single leg system for a quadruped robot[J]. Machinery Design & Manufacture, 2022(1): 290-294.(in Chinese) doi: 10.3969/j.issn.1001-3997.2022.01.065
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(2)

    Article Metrics

    Article views (454) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return