Volume 43 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
CAO Juan, REN Fengli. Mean-Square Synchronization and Stochastically Passive Synchronization of Delayed Gene Regulatory Networks With Markovian Switching[J]. Applied Mathematics and Mechanics, 2022, 43(2): 198-206. doi: 10.21656/1000-0887.420256
Citation: CAO Juan, REN Fengli. Mean-Square Synchronization and Stochastically Passive Synchronization of Delayed Gene Regulatory Networks With Markovian Switching[J]. Applied Mathematics and Mechanics, 2022, 43(2): 198-206. doi: 10.21656/1000-0887.420256

Mean-Square Synchronization and Stochastically Passive Synchronization of Delayed Gene Regulatory Networks With Markovian Switching

doi: 10.21656/1000-0887.420256
  • Received Date: 2021-08-31
  • Accepted Date: 2021-08-31
  • Rev Recd Date: 2021-12-15
  • Available Online: 2022-01-06
  • Publish Date: 2022-02-01
  • The research of gene regulatory networks (GRNs) and their dynamic models is important in the post-genome era. Qualitative analysis of GRNs and their dynamics is of great significance to the understanding of organisms from a systematic perspective. A stochastic GRN model with time-varying delay and Markovian switching was proposed to study the properties of mean-square synchronization and stochastically passive synchronization. Through the design of an appropriate Lyapunov-Krasovskii functional (LKF), the sufficient conditions for mean-square synchronization and stochastically passive synchronization were obtained by means of the Lyapunov stability theory, the linear matrix inequality method and the random analysis techniques. In addition, the comparison between the results of this paper and some other literatures shows that, the present results have markable theoretical meaning. The numerical simulation illustrates the validity of the obtained sufficient conditions.

  • loading
  • [1]
    CHEN L, AIHARA K. Stability of genetic regulatory networks with time delay[J]. IEEE Transactions on Circuits and Systems Ⅰ: Fundamental Theory and Applications, 2002, 49(5): 602-608. doi: 10.1109/TCSI.2002.1001949
    [2]
    WANG G, CAO J. Robust exponential stability analysis for stochastic genetic networks with uncertain parameters[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(8): 3369-3378. doi: 10.1016/j.cnsns.2009.01.004
    [3]
    YANG X L, SENTHILKUMAR D V, SUN Z K, et al. Key role of time-delay and connection topology in shaping the dynamics of noisy genetic regulatory networks[J]. Chaos, 2011, 21(4): 047522. doi: 10.1063/1.3629984
    [4]
    YAO Y, LIANG J, CAO J. Robust stability of Markovian jumping genetic regulatory networks with disturbance attenuation[J]. Asian Journal of Control, 2011, 13(5): 655-666. doi: 10.1002/asjc.373
    [5]
    YAO Y, LIANG J, CAO J. Stability analysis for switched genetic regulatory networks: an average dwell time approach[J]. Journal of the Franklin Institute, 2011, 348(10): 2718-2733. doi: 10.1016/j.jfranklin.2011.04.016
    [6]
    LI C, CHEN L, AIHARA K. Stochastic synchronization of genetic oscillator networks[J]. BMC Systems Biology, 2007, 1(1): 1-11. doi: 10.1186/1752-0509-1-1
    [7]
    CHEN B S, HSU C Y. Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing[J]. BMC Systems Biology, 2012, 6(1): 1−15. doi: 10.1186/1752-0509-6-115
    [8]
    LU L, HE B, MAN C, et al. Passive synchronization for Markov jump genetic oscillator networks with time-varying delays[J]. Mathematical Biosciences, 2015, 262(1): 80-87.
    [9]
    REN F, CAO F, CAO J. Mittag-Leffler stability and generalized Mittag-Leffler stability of fractional-order gene regulatory networks[J]. Neurocomputing, 2015, 160(21): 185-190.
    [10]
    QIAN Y, YAN H, DUAN L, et al. Finite-time synchronization of fractional-order gene regulatory networks with time delay[J]. Neural Networks, 2020, 126(2): 1-10.
    [11]
    XU G, H BAO, CAO J. Mean-square exponential input-to-state stability of stochastic gene regulatory networks with multiple time delays[J]. Neural Processing Letters, 2020, 51(1): 271-286. doi: 10.1007/s11063-019-10087-9
    [12]
    KURASOV P, MUGNOLO D, WOLF V. Analytic solutions for stochastic hybrid models of gene regulatory networks[J]. Journal of Mathematical Biology, 2021, 82(1/2): 1-9.
    [13]
    HAO L, YANG Z, BI Y. Deterministic and stochastic dynamics in a gene regulatory network mediated by miRNA[J]. Nonlinear Dynamics, 2021, 103(3): 2903-2916. doi: 10.1007/s11071-021-06239-z
    [14]
    MAO X C, LI X Y, DING W J, et al. Dynamics of a multiplex neural network with delayed couplings[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(3): 441-456. doi: 10.1007/s10483-021-2709-6
    [15]
    WANG Z H. Criteria for minimization of spectral abscissa of time-delay systems[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(7): 969-980. doi: 10.1007/s10483-021-2751-9
    [16]
    WANG Y, WANG Z, LIANG J. On robust stability of stochastic genetic regulatory networks with time delays: a delay fractioning approach[J]. IEEE Transactions on Systems, Man and Cybernetics (Part B), 2009, 40(3): 729-740.
    [17]
    LOU X, QIAN Y, CUI B. Exponential stability of genetic regulatory networks with random delays[J]. Neurocomputing, 2010, 73(4/6): 759-769.
    [18]
    ZHU Q, CAO J. Exponential stability of stochastic neural networks with both markovian jump parameters and mixed time delays[J]. IEEE Transactions on Cybernetics, 2011, 41(2): 341-353.
    [19]
    ZHU Q. Asymptotic stability in the pth moment for stochastic differential equations with Lévy noise[J]. Journal of Mathematical Analysis and Applications, 2014, 416(1): 126-142. doi: 10.1016/j.jmaa.2014.02.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (713) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return