Volume 42 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
CHENG Bo, XU Feng. A Molecular Clutch Model of Cellular Adhesion on Viscoelastic Substrate[J]. Applied Mathematics and Mechanics, 2021, 42(10): 1074-1080. doi: 10.21656/1000-0887.420259
Citation: CHENG Bo, XU Feng. A Molecular Clutch Model of Cellular Adhesion on Viscoelastic Substrate[J]. Applied Mathematics and Mechanics, 2021, 42(10): 1074-1080. doi: 10.21656/1000-0887.420259

A Molecular Clutch Model of Cellular Adhesion on Viscoelastic Substrate

doi: 10.21656/1000-0887.420259
Funds:

11761161004

12002262)

The National Natural Science Foundation of China(11972280

  • Received Date: 2021-08-31
  • Rev Recd Date: 2021-09-23
  • The viscoelastic nature of the microenvironment of a cell is critical to cell mechanobiology, and modulates the mechanical feedback between cells and extracellular matrix. However, the mechanisms underlying the ways that cells actively sense and respond to a viscoelastic microenvironment remain elusive. We therefore developed a molecular clutch model of cell traction to predict the effects of substrate viscoelasticity on the dynamics of focal adhesions connecting the intracellular actin cytoskeleton to a viscoelastic substrate. The model predicts that certain levels of viscoelastic damping can increase cell tractions on relatively compliant substrates, and that this damping reduces cell tractions on relatively stiff substrates. The model predictions are qualitatively consistent well with reported experimental observations. The model offers physical insights into the role of substrate viscoelasticity on cell tractions and cell spreading.
  • loading
  • SCHOEN I, PRUITT BL, VOGEL V. The Yin-Yang of rigidity sensing: how forces and mechanical properties regulate the cellular response to materials[J].Annual Review of Materials Research,2013,43: 589-618.
    [2]CHAUDHURI O, LUO G, KLUMPERS D, et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity[J].Nature Materials,2016,15(3): 326-334.
    [3]CHAUDHURI O, KOSHY S T, CUNHA C D. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium[J].Nature Materials,2014,13(10): 970-978.
    [4]DALBY MJ, GADEGAARD N, OREFFO R O. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate[J].Nature Materials,2014,13: 558-69.
    [5]TRAPPMANN B, GAUTROT J, CONNELLY J, et al. Extracellular-matrix tethering regulates stem-cell fate[J].Nature Materials,2012,11(7): 642-649.
    [6]CASE L B, WATERMAN C M. Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch[J].Nature Cell Biology,2015,17(8): 955-963.
    [7]NING L, LU S, YAN Z, et al. Mechanokinetics of receptor-ligand interactions in cell adhesion[J].Acta Mechanica Sinica,2015,31: 248-258.
    [8]CHENG B, LIN M, HUANG G, et al. Cellular mechanosensing of the biophysical microenvironment: a review of mathematical models of biophysical regulation of cell responses[J].Physics of Life Reviews,2017,22/23: 88-119.
    [9]CHENG B, LIN M, HUANG G, et al. Energetics: an emerging frontier in cellular mechanosensing: reply to comments on “cellular mechanosensing of the biophysical microenvironment: a review of mathematical models of biophysical regulation of cell responses”[J].Physics of Life Reviews,2017,22/23: 130-135.
    [10]MARUTHAMUTHU V, SABASS B, SCHWARZ U S, et al. Cell-ECM traction force modulates endogenous tension at cell-cell contacts[J].Proceedings of the National Academy of Sciences of the United States of America,2011,108(12): 4708-4713.
    [11]KOCH T M, STEFAN M, NAVID B, et al. 3D traction forces in cancer cell invasion[J].Plos One,2012,7(3): e33476. DOI:10.1371/ journal.pone.0033476.
    [12]CHAN C E, ODDE D J. Traction dynamics of filopodia on compliant substrates[J].Science,2008,322: 1687-1691.
    [13]BANGASSER B L, ROSENFELD S, ODDE D J. Determinants of maximal force transmission in a Motor-Clutch model of cell traction in a compliant microenvironment[J].Biophysical Journal,2013,105(3): 581-592.
    [14]BANGASSER B L, ODDE D J. Master equation-based analysis of a motor-clutch model for cell traction force: cellular and molecular bioengineering [J].Cell Mol Bioeng,2013, 6(4): 449-459.
    [15]BANGASSER B L, SHAMSAN G A, CHAN C E, et al. Shifting the optimal stiffness for cell migration[J].Nature Communications,2017,8: 15313.
    [16]CHENG B, LIN M, LI Y, et al. An integrated stochastic model of matrix-stiffness-dependent filopodial dynamics[J].Biophysical Journal,2016,111(9): 2051-2061.
    [17]GEERLIGS M, PETERS G W, ACKERMANS P A, et al. Linear viscoelastic behavior of subcutaneous adipose tissue[J].Biorheology,2008,45: 677-688.
    [18]BABAEI B, ABRAMOWITCH S D, ELSON E L, et al. A discrete spectral analysis for determining quasi-linear viscoelastic properties of biological materials[J].Journal of the Royal Society Interface,2015,12(113): 20150707.
    [19]CHAUDHURI O, GU L, DARNELL M, et al. Substrate stress relaxation regulates cell spreading[J].Nature Communications,2015,6: 6365.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (614) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return