Citation: | LI Kai, YE Tianyu, WANG Jizeng. Stretching a Polymer Chain in a Confined Space[J]. Applied Mathematics and Mechanics, 2021, 42(10): 1008-1023. doi: 10.21656/1000-0887.420279 |
RUBINSTEIN M, COLBY R H. Polymer Physics[M]. New York: Oxford University Press, 2003.
|
[2]ARRUDA E M, BOYCE M C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials[J]. Journal of the Mechanics and Physics of Solids,1993,41(2): 389-412.
|
[3]REISNER W, MORTON K J, RIEHN R, et al. Statics and dynamics of single DNA molecules confined in nanochannels[J]. Physical Review Letters,2005,94(19): 196101.
|
[4]REISNER W, PEDERSEN J N, AUSTIN R H. DNA confinement in nanochannels: physics and biological applications[J]. Reports on Progress in Physics,2012,75(10): 106601.
|
[5]BAO G. Mechanics of biomolecules[J]. Journal of the Mechanics and Physics of Solids,2002,50(11): 2237-2274.
|
[6]DAI L, RENNER C B, DOYLE P S. The polymer physics of single DNA confined in nanochannels[J]. Advances in Colloid and Interface Science,2016,232: 80-100.
|
[7]CHEN J Z. Theory of wormlike polymer chains in confinement[J]. Progress in Polymer Science,2016,54/55: 3-46.
|
[8]KSTER S, PFOHL T. An in vitro model system for cytoskeletal confinement[J]. Cell Motility and the Cytoskeleton,2009,66(10): 771-776.
|
[9]WOLFFE A. Chromatin: Structure and Function[M]. Academic Press, 1998.
|
[10]JUN S, MULDER B. Entropy-driven spatial organization of highly confined polymers: lessons for the bacterial chromosome[J]. Proceedings of the National Academy of Sciences,2006,103(33): 12388-12393.
|
[11]BELL S, TERENTJEV E M. Kinetics of tethered ligands binding to a surface receptor[J]. Macromolecules,2017,50(21): 8810-8815.
|
[12]CERRITELLI M E, CHENG N, ROSENBERG A H, et al. Encapsidated conformation of bacteriophage T7 DNA[J]. Cell,1997,91(2): 271-280.
|
[13]EARNSHAW W, HARRISON S. DNA arrangement in isometric phage heads[J]. Nature,1977,268(5621): 598-602.
|
[14]LAM E T, HASTIE A, LIN C, et al. Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly[J]. Nature Biotechnology,2012,30(8): 771-776.
|
[15]DORFMAN K D. The fluid mechanics of genome mapping[J]. AICHE Journal,2013,59(2): 346-354.
|
[16]CHAN E Y, GONCALVES N M, HAEUSLER R A, et al. DNA mapping using microfluidic stretching and single-molecule detection of fluorescent site-specific tags[J]. Genome Research,2004,14(6): 1137-1146.
|
[17]HAN J, CRAIGHEAD H G. Separation of long DNA molecules in a microfabricated entropic trap array[J]. Science,2000,288(5468): 1026-1029.
|
[18]YAMAKAWA H. Modern Theory of Polymer Solutions[M]. New York: Harper & Row, 1971.
|
[19]AUSTIN R H, BRODY J P. Stretch genes[J]. Physics Today,1997,50(2): 32-38.
|
[20]BUSTAMANTE C, SMITH S B, LIPHARDT J, et al. Single-molecule studies of DNA mechanics[J]. Current Opinion in Structural Biology,2000,10(3): 279-285.
|
[21]KRATKY O, POROD G. Rntgenuntersuchung gelster fadenmoleküle[J]. Recueil des Travaux Chimiques des Pays-Bas,1949,68(12): 1106-1122.
|
[22]HERMANS J, ULLMAN R. The statistics of stiff chains, with applications to light scattering[J]. Physica,1952,18(11): 951-971.
|
[23]YAMAKAWA H. Helical Wormlike Chains in Polymer Solutions[M]. Springer, 1997.
|
[24]FREED K F. Functional integrals and polymer statistics[J]. Advaces in Chemical Physics,1972,22: 1.
DOI: 10.1002/9780470143728.ch1.
|
[25]FEYNMAN R P, HIBBS A R, STYER D F. Quantum Mechanics and Path Integrals[M]. Courier Corporation, 2010.
|
[26]WANG M D, YIN H, LANDICK R, et al. Stretching DNA with optical tweezers[J]. Biophysical Journal,1997,72(3): 1335-1346.
|
[27]STRICK T, ALLEMAND J-F, CROQUETTE V, et al. Twisting and stretching single DNA molecules[J]. Progress in Biophysics and Molecular Biology,2000,74(1/2): 115-140.
|
[28]COCCO S, MARKO J F, MONASSON R. Theoretical models for single-molecule DNA and RNA experiments: from elasticity to unzipping[J]. Comptes Rendus Physique,2002,3(5): 569-584.
|
[29]SMITH S B, CUI Y, BUSTAMANTE C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules[J]. Science,1996,271(5250): 795-799.
|
[30]DE GENNES P G, GENNES P G. Scaling Concepts in Polymer Physics[M]. Cornell University Press, 1979.
|
[31]DOI M, EDWARDS S F, EDWARDS S F. The Theory of Polymer Dynamics[M]. Oxford University Press, 1988.
|
[32]MARKO J F, SIGGIA E D. Stretching DNA[J]. Macromolecules,1995,28(26): 8759-8770.
|
[33]KIERFELD J, NIAMPLOY O, SA-YAKANIT V, et al. Stretching of semiflexible polymers with elastic bonds[J]. The European Physical Journal E,2004,14(1): 17-34.
|
[34]FLORY P J. Principles of Polymer Chemistry[M]. Cornell University Press, 1953.
|
[35]DE GENNES P G. Dynamics of entangled polymer solutions, Ⅰ: the Rouse model[J]. Macromolecules,1976,9(4): 587-593.
|
[36]WANG J Z, LI L, GAO H J. Compressed wormlike chain moving out of confined space: a model of DNA ejection from bacteriophage[J]. Acta Mechanica Sinica,2012,28(4): 1219-1226.
|
[37]SCHIESSEL H. The physics of chromatin[J]. Journal of Physics: Condensed Matter,2003,15(19): R699.
|
[38]DAI L, VAN DER MAAREL J, DOYLE P S. Extended de Gennes regime of DNA confined in a nanochannel[J]. Macromolecules,2014,47(7): 2445-2450.
|
[39]ODIJK T. Physics of tightly curved semiflexible polymer chains[J]. Macromolecules,1993,26(25): 6897-6902.
|
[40]ODIJK T. The statistics and dynamics of confined or entangled stiff polymers[J]. Macromolecules,1983,16(8): 1340-1344.
|
[41]ODIJK T. Similarity applied to the statistics of confined stiff polymers[J]. Macromolecules,1984,17(3): 502-503.
|
[42]ODIJK T. DNA confined in nanochannels: hairpin tightening by entropic depletion[J]. The Journal of Chemical Physics,2006,125(20): 204904.
|
[43]DIJKSTRA M, FRENKEL D, LEKKERKERKER H N. Confinement free energy of semiflexible polymers[J]. Physica A,1993,193(3/4): 374-393.
|
[44]BICOUT D J, BURKHARDT T W. Simulation of a semiflexible polymer in a narrow cylindrical pore[J]. Journal of Physics A,2001,34(29): 5745.
|
[45]YANG Y, BURKHARDT T W, GOMPPER G. Free energy and extension of a semiflexible polymer in cylindrical confining geometries[J]. Physical Review E,2007,76(1): 011804.
|
[46]WANG J, GAO H. A generalized bead-rod model for Brownian dynamics simulations of wormlike chains under strong confinement[J]. The Journal of Chemical Physics,2005,123(8): 084906.
|
[47]CHEN J Z. Free energy and extension of a wormlike chain in tube confinement[J]. Macromolecules,2013,46(24): 9837-9844.
|
[48]BURKHARDT T W. Free energy of a semiflexible polymer in a tube and statistics of a randomly-accelerated particle[J]. Journal of Physics A: Mathematical and General,1997,30(7): L167-L172.
|
[49]GRASSBERGER P.Pruned-enriched Rosenbluth method: simulations of θ polymers of chain length up to 1 000 000[J]. Physical Review E,1997,56(3): 3682-3693.
|
[50]LI R, WANG J. Stretching a semiflexible polymer in a tube[J]. Polymers,2016,8(9): 328.
|
[51]WANG J, LI K. Statistical behaviors of semiflexible polymer chains stretched in rectangular tubes[J]. Polymers,2019,11(2): 260.
|
[52]TREE D R, WANG Y, DORFMAN K D. Extension of DNA in a nanochannel as a rod-to-coil transition[J]. Physical Review Letters,2013,110(20): 208103.
|
[53]CHEN J Z. Conformational properties of a back-folding wormlike chain confined in a cylindrical tube[J]. Physical Review Letters,2017,118(24): 247802.
|
[54]MURALIDHAR A, TREE D R, DORFMAN K D. Backfolding of wormlike chains confined in nanochannels[J]. Macromolecules,2014,47(23): 8446-8458.
|
[55]IARKO V, WERNER E, NYBERG L, et al. Extension of nanoconfined DNA: quantitative comparison between experiment and theory[J]. Physical Review E,2015,92(6): 062701.
|
[56]WERNER E, PERSSON F, WESTERLUND F, et al. Orientational correlations in confined DNA[J]. Physical Review E,2012,86(4): 041802.
|
[57]PUROHIT P K, KONDEV J, PHILLIPS R. Mechanics of DNA packaging in viruses[J]. Proceedings of the National Academy of Sciences,2003,100(6): 3173-3178.
|
[58]LI M, WANG J. Stretching wormlike chains in narrow tubes of arbitrary cross-sections[J]. Polymers,2019,11(12): 2050.
|
[59]DAI L, DOYLE P S. Comparisons of a polymer in confinement versus applied force[J]. Macromolecules,2013,46(15): 6336-6344.
|
[60]CHEN Y L, LIN P K, CHOU C F. Generalized force-extension relation for wormlike chains in slit confinement[J]. Macromolecules,2010,43(24): 10204-10207.
|
[61]TALONI A, YEH J W, CHOU C F. Scaling theory of stretched polymers in nanoslits[J]. Macromolecules,2013,46(19): 7989-8002.
|
[62]DE HAAN H W, SHENDRUK T N. Force-extension for DNA in a nanoslit: mapping between the 3D and 2D limits[J]. ACS Macro Letters,2015,4(6): 632-635.
|
[63]WANG J, GAO H. Stretching a stiff polymer in a tube[J]. Journal of Materials Science,2007,42(21): 8838-8843.
|
[64]BURKHARDT T W. Free energy of a semiflexible polymer confined along an axis[J]. Journal of Physics A: Mathematical and General,1995,28(24): L629.
|
[65]WANG J Z, LI R H. Stretching strongly confined semiflexible polymer chain[J]. Applied Mathematics and Mechanics(English Edition),2014,35(10): 1233-1238.
|
[66]THUROFF F, OBERMAYER B, FREY E. Longitudinal response of confined semiflexible polymers[J]. Physical Review E,2011,83(2): 021802.
|
[67]ERMAK D L, MCCAMMON J A. Brownian dynamics with hydrodynamic interactions[J]. The Journal of Chemical Physics,1978,69(4): 1352-1360.
|
[68]HUANG J, SCHLICK T. Macroscopic modeling and simulations of supercoiled DNA with bound proteins[J]. The Journal of Chemical Physics,2002,117(18): 8573-8586.
|
[69]LEWIS R J, ALLISON S A, EDEN D, et al. Brownian dynamics simulations of a three-subunit and a ten-subunit worm-like chain: comparison of results with trumbell theory and with experimental results from DNA[J]. The Journal of Chemical Physics,1988,89(4): 2490-2503.
|
[70]ALLISON S A. Brownian dynamics simulation of wormlike chains. Fluorescence depolarization and depolarized light scattering[J]. Macromolecules,1986,19(1): 118-124.
|
[71]JIAN H, VOLOGODSKII A V, SCHLICK T. A combined wormlike-chain and bead model for dynamic simulations of long linear DNA[J]. Journal of Computational Physics,1997,136(1): 168-179.
|
[72]NEELOV I M, ADOLF D B, LYULIN A V, et al. Brownian dynamics simulation of linear polymers under elongational flow: bead-rod model with hydrodynamic interactions[J]. The Journal of Chemical Physics,2002,117(8): 4030-4041.
|
[73]PETERA D, MUTHUKUMAR M. Brownian dynamics simulation of bead-rod chains under shear with hydrodynamic interaction[J]. The Journal of Chemical Physics,1999,111(16): 7614-7623.
|
[74]AGARWAL U. Effect of initial conformation, flow strength, and hydrodynamic interaction on polymer molecules in extensional flows[J]. The Journal of Chemical Physics,2000,113(8): 3397-3403.
|
[75]AGARWAL U, BHARGAVA R, MASHELKAR R. Brownian dynamics simulation of a polymer molecule in solution under elongational flow[J]. The Journal of Chemical Physics,1998,108(4): 1610-1617.
|
[76]WANG J, GAO H. Brownian dynamics simulations of charged semiflexible polymers confined to curved surfaces[J]. Journal of the Mechanical Behavior of Biomedical Materials,2011,4(2): 174-179.
|
[77]HESS B, BEKKER H, BERENDSEN H J, et al. LINCS: a linear constraint solver for molecular simulations[J]. Journal of Computational Chemistry, 1997,18(12): 1463-1472.
|
[78]BEHRINGER H, EICHHORN R. Brownian dynamics simulations with hard-body interactions: spherical particles[J]. The Journal of Chemical Physics,2012,137(16): 164108.
|
[79]PAMIES R, CIFRE J H, DE LA TORRE J G. Brownian dynamics simulation of polyelectrolyte dilute solutions under shear flow[J]. Journal of Polymer Science Part B: Polymer Physics,2007,45(1): 1-9.
|
[80]MONTESI A, MORSE D C, PASQUALI M. Brownian dynamics algorithm for bead-rod semiflexible chain with anisotropic friction[J]. The Journal of Chemical Physics,2005,122(8): 084903.
|
[81]LANG P S, OBERMAYER B, FREY E. Dynamics of a semiflexible polymer or polymer ring in shear flow[J]. Physical Review E,2014,89(2): 022606.
|
[82]HSU H P, GRASSBERGER P. A review of Monte Carlo simulations of polymers with PERM[J]. Journal of Statistical Physics,2011,144(3): 597-637.
|
[83]HSU H P, BINDER K. Semi-flexible polymer chains in quasi-one-dimensional confinement: a Monte Carlo study on the square lattice[J]. Soft Matter,2013,9(44): 10512-10521.
|
[84]HSU H P, GRASSBERGER P. Polymers confined between two parallel plane walls[J]. The Journal of Chemical Physics,2004,120(4): 2034-2041.
|
[85]MURALIDHAR A, TREE D R, WANG Y, et al. Interplay between chain stiffness and excluded volume of semiflexible polymers confined in nanochannels[J]. The Journal of Chemical Physics,2014,140(8): 084905.
|
[86]LI X, DORFMAN K D. Effect of excluded volume on the force-extension of wormlike chains in slit confinement[J]. The Journal of Chemical Physics,2016,144(10): 104902.
|
[87]JUN S, THIRUMALAI D, HA B Y. Compression and stretching of a self-avoiding chain in cylindrical nanopores[J]. Physical Review Letters,2008,101(13): 138101.
|
[88]JUNG Y, JUN S, HA B Y. Self-avoiding polymer trapped inside a cylindrical pore: Flory free energy and unexpected dynamics[J]. Physical Review E,2009,79(6): 061912.
|