Volume 42 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
GONG Bo, LIN Ji, WANG Yanzhong, QIAN Jin. Mechanical Modeling and Analyses of Cytoskeleton and Extracellular Matrix[J]. Applied Mathematics and Mechanics, 2021, 42(10): 1024-1044. doi: 10.21656/1000-0887.420302
Citation: GONG Bo, LIN Ji, WANG Yanzhong, QIAN Jin. Mechanical Modeling and Analyses of Cytoskeleton and Extracellular Matrix[J]. Applied Mathematics and Mechanics, 2021, 42(10): 1024-1044. doi: 10.21656/1000-0887.420302

Mechanical Modeling and Analyses of Cytoskeleton and Extracellular Matrix

doi: 10.21656/1000-0887.420302
Funds:

The National Natural Science Foundation of China(12072316;12125205)

  • Received Date: 2021-10-08
  • Rev Recd Date: 2021-10-18
  • The cells and biological tissues need to adapt the complex physiological and mechanical environment in human body. They must withstand the mechanical loads from external environment, and equally important, they often actively produce forces to change their architecture and shape during physiological processes such as tissue growth and repair. The mechanical properties of cells are mainly determined by cytoskeleton, and the stiffness of biological tissues is greatly affected by extracellular matrix. Microscopically, cytoskeleton and extracellular matrix are intricate, heterogeneous 3D networks of crosslinked biopolymers. Early studies mainly focused on explaining the universal features such as the nonlinear response and strain stiffening of these biopolymer networks by constructing various network models. In recent years, with the simultaneous progress in experimental methods, theoretical models and computational techniques, more intriguing mechanical behaviors and underlying mechanisms of these living matters have been revealed. In this review, we online some of the major advances in modeling and analyzing cytoskeleton and extracellular matrix, including the dynamic crosslinking, active materials originated from mechanochemical coupling of biopolymers, plasticity/fracture of crosslinked networks, and self-adaption triggered by mechanical training. These modeling and analyses may help to quantify the complex behaviors of cells and tissues, deepen our understanding of the underlying mechanobiological mechanisms, and provide guidance for synthetic biological materials and tissue engineering.
  • loading
  • ALBERTS B. Molecular biology of the cell[J].Artificial Life,2002,10(2): 82-95.
    [2]GARDEL M L, KASZA K E, BRANGWYNNE C P, et al. Chapter 19: mechanical response of cytoskeletal networks[J].Methods in Cell Biology,2008,89(8): 487-519.
    [3]EHRLICHER A J, NAKAMURA F, HARTWIG J H, et al. Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A[J].Nature,2011,478(7368): 260-263.
    [4]ZHU C, BAO G, WANG N. Cell mechanics: mechanical response, cell adhesion, and molecular deformation[J].Annual Review of Biomedical Engineering,2000,2: 189-226.
    [5]BURLA F, MULLA Y, VOS B E, et al. From mechanical resilience to active material properties in biopolymer networks[J].Nature Reviews Physics,2019,1(4): 249-263.
    [6]LEE H, PELZ B, FERRER J M, et al. Cytoskeletal deformation at high strains and the role of cross-link unfolding or unbinding[J].Cellular and Molecular Bioengineering,2009,2(1): 28-38.
    [7]KOENDERINK G H, DOGIC Z, NAKAMURA F, et al. An active biopolymer network controlled by molecular motors[J].Proceedings of the National Academy of Sciences of the United States of America,2009,106(36): 15192-15197.
    [8]WANG N, INGBER D. Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry[J].Biochemistry and Cell Biology,1995,73(7/8): 327-335.
    [9]GARDEL M L, SHIN J H, MACKINTOSH F C, et al. Elastic behavior of cross-linked and bundled actin networks[J].Science,2004,304(5675): 1301-1305.
    [10]STORM C, PASTORE J J, MACKINTOSH F C, et al. Nonlinear elasticity in biological gels[J].Nature,2005,435(7039): 191-194.
    [11]TREPAT X, DENG L, AN S S, et al. Universal physical responses to stretch in the living cell[J].Nature,2007,447(7144): 592-595.
    [12]KANG H, WEN Q, JANMEY P A, et al. Nonlinear elasticity of stiff filament networks: strain stiffening, negative normal stress, and filament alignment in fibrin gels[J].Journal of Physical Chemistry B,2009,113(12): 3799-3805.
    [13]KASZA K E, BROEDERSZ C P, KOENDERINK G H, et al. Actin filament length tunes elasticity of flexibly cross-linked actin networks[J].Biophysical Journal,2010,99(4): 1091-1100.
    [14]BROEDERSZ C P, KASZA K E, JAWERTH L M, et al. Measurement of nonlinear rheology of cross-linked biopolymer gels[J].Soft Matter,2010,6(17): 4120-4127.
    [15]CHAUDURI O, PAREKH S H, FLETCHER D A. Reversible stress softening of actin networks[J].Nature,2007,445(7125): 295-298.
    [16]DIDONNA B A, LEVINE A J. Unfolding cross-linkers as rheology regulators in F-actin networks[J].Physical Review E,2007,75(4): 041909.
    [17]WOLFF L, FERNANDEZ P, KROY K. Resolving the stiffening-softening paradox in cell mechanics[J].PLoS One,2012,7(7): e40063.
    [18]KEITH B, CHRISTOPHE G. Focal adhesions, stress fibers and mechanical tension[J].Experimental Cell Research,2016,343(1): 14-20.
    [19]INGBER D E, WANG N, STAMENOVIC D. Tensegrity, cellular biophysics, and the mechanics of living systems[J].Reports on Progress in Physics,2014,77(4): 046603.
    [20]GRINNELL F. Fibroblast biology in three-dimensional collagen matrices[J].Trends in Cell Biology,2003,13(5): 264-269.
    [21]LANIR Y. Mechanisms of residual stress in soft tissues[J].Journal of Biomechanical Engineering,2009,131(4): 044506.
    [22]BAUSCH A R, KROY K. A bottom-up approach to cell mechanics[J].Nature Physics,2006,2(4): 231-238.
    [23]BROEDERSZ C P, MACKINTOSH F C. Modeling semiflexible polymer networks[J].Reviews of Modern Physics,2014,86(3): 995-1036.
    [24]PRITCHARD R H, HUANG Y Y S, TERENTJEV E M. Mechanics of biological networks: from the cell cytoskeleton to connective tissue[J].Soft Matter,2014,10(12):1864-1884.
    [25]HORTON E R, BYRON A, ASKARI J A, et al. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly[J].Nature Cell Biology,2015,17(12): 1577-1587.
    [26]程传亮, 龚博, 钱劲. 生物聚合物网络的力学响应[J]. 应用数学和力学, 2016,37(5): 441-458.(CHENG Chuanliang, GONG Bo, QIAN Jin. Mechanical responses of crosslinked biopolymer networks[J].Applied Mathematics and Mechanics,2016,37(5): 441-458.(in Chinese))
    [27]BEESE L, STOBBS G, COHEN C. Microtubule structure at 18 Å resolution[J].Journal of Molecular Biology,1987,194(2): 257-264.
    [28]LI H L, DEROSIER D J, NICHOLSON W V, et al. Microtubule structure at 8 Å resolution[J].Structure,2002,10(10): 1317-1328.
    [29]DE PABLO P J, SCHAAP I A T, MACKINTOSH F C, et al. Deformation and collapse of microtubules on the nanometer scale[J].Physical Review Letters,2003,91(9): 098101.
    [30]CONDE C, CACERES A. Microtubule assembly, organization and dynamics in axons and dendrites[J].Nature Reviews Neuroscience,2009,10(5): 319-332.
    [31]ODDE D J, MA L, BRIGGS A H, et al. Microtubule bending and breaking in living fibroblast cells[J].Journal of Cell Science,1999,112(19): 3283-3288.
    [32]KAPITEIN L C, HOOGENRAAD C C. Building the neuronal microtubule cytoskeleton[J].Neuron,2015,87(3): 492-506.
    [33]ISHIKAWA H, BISCHOFF R, HOLTZER H. Mitosis and intermediate-sized filaments in developing skeletal muscle[J].The Journal of Cell Biology,1968,38(3): 538-555.
    [34]HERRMANN H, BAR H, KREPLAK L, et al. Intermediate filaments: from cell architecture to nanomechanics[J].Nature Reviews Molecular Cell Biology,2007,8(7): 562-573.
    [35]RAUB C B, SURESH V, KRASIRVA T, et al. Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy[J].Biophysical Journal,2007,92(6): 2212-2222.
    [36]LODISH H, BERK A, ZIPURSKY S L, et al.Molecular Cell Biology[M]. New York: W H Freeman, 2000: 951-959.
    [37]FLETCHER D A, MULLINS R D. Cell mechanics and the cytoskeleton[J].Nature,2010,463(7280): 485-492.
    [38]RUBINSTEIN M, COLBY R H.Polymer Physics[M]. Oxford: Oxford University Press, 2003: 10-200.
    [39]MARKO J F, SIGGIA E D. Stretching DNA[J].Macromolecules,1995,28(26): 8759-8770.
    [40]孙训方, 方孝淑, 关来泰. 材料力学[M]. 北京: 高等教育出版社,2009: 9-38.(SUN Xunfang, FANG Xiaoshu, GUAN Laitai.Mechanics of Materials[M]. Beijing: China Higher Education Press, 2009: 9-38.(in Chinese))
    [41]曲东明, 韩梅, 温进坤. 肌动蛋白结合蛋白[J]. 中国细胞生物学学报, 2007,29(2): 219-224.(QU Dongming, HAN Mei, WEN Jinkun. Actin binding protein[J].Chinese Journal of Cell Biology,2007,29(2): 219-224.(in Chinese))
    [42]MACHESKY L M, MULLINS R D, HIGGS H N, et al. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex[J].Proceedings of the National Academy of Sciences of the United States of America,1999,96(7): 3739-3744.
    [43]ALVARADO J, SHEINMAN M, SHARMA A, et al. Force percolation of contractile active gels[J].Soft Matter,2017,13(34): 5624-5644.
    [44]MOGILNER A, RUBINSTEIN B. The physics of filopodial protrusion[J].Biophysical Journal,2005,89(2): 782-795.
    [45]BASNET N, NEDOZRALOVA H, CREVENNA A H, et al. Direct induction of microtubule branching by microtubule nucleation factor SSNA1[J].Nature Cell Biology,2018,20(10): 1172-1180.
    [46]DOGTEROM M, KOENDERINK G H. Actin-microtubule crosstalk in cell biology[J].Nature Reviews Molecular Cell Biology,2019,20(1): 38-54.
    [47]LIN Y C, BROEDERSZ C P, ROWAT A C, et al. Divalent cations crosslink vimentin intermediate filament tail domains to regulate network mechanics[J].Journal of Molecular Biology,2010,399(4): 637-644.
    [48]KAGAN H M, LI W D. Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell[J].Journal of Cellular Biochemistry,2003,88(4): 660-672.
    [49]LICUP A J, MNSTER S, SHARMA A, et al. Stress controls the mechanics of collagen networks[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(31): 9573-9578.
    [50]SHARMA A, LICUP A J, JANSEN K A, et al. Strain-controlled criticality governs the nonlinear mechanics of fibre networks[J].Nature Physics,2016,12(6): 584-587.
    [51]GASTYNSKA N, KRISHNAKUMAR G S, CAMPODONI E, et al. 3D porous collagen scaffolds reinforced by glycation with ribose for tissue engineering application[J].Biomedical Materials,2017,12(5): 055002.
    [52]VALERO C, AMAVEDA H, MORA M, et al. Combined experimental and computational characterization of crosslinked collagen-based hydrogels[J].PLoS One,2018,13(4): e0195820.
    [53]FLETCHER D A, GEISSLER P L. Active biological materials[J].Annual Review of Physical Chemistry,2009,60: 469-486.
    [54]GONG B, LIN J, QIAN J. Growing actin networks regulated by obstacle size and shape[J].Acta Mechanica Sinica,2017,33(2): 222-233.
    [55]POLLARD T D, COOOPER J A. Actin, a central player in cell shape and movement[J].Science,2009,326(5957): 1208-1212.
    [56]DICKINSON R B. Models for actin polymerization motors[J].Journal of Mathematical Biology,2009,58(1/2): 81-103.
    [57]MARTIN P. Wound healing-aiming for perfect skin regeneration[J].Science,1997,276(5309): 75-81.
    [58]POLLARD T D. Mechanics of cytokinesis in eukaryotes[J].Current Opinion in Cell Biology,2010,22(1): 50-56.
    [59]RIDLEY A J, SCHWARTZ M A, BURRIDGE K, et al. Cell migration: integrating signals from front to back[J].Science,2003,302(5651): 1704-1709.
    [60]XU K, ZHPNG G, ZHUANG X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons[J].Science,2013,339(6118): 452-456.
    [61]JIA Y B, WANG Y Z, NIU L L, et al. The plasticity of nanofibrous matrix regulates fibroblast activation in fibrosis[J].Advanced Healthcare Materials,2021,10(8): 2001865.
    [62]HAHN I, VOELZMANN A, LIEW Y T, et al. The model of local axon homeostasis-explaining the role and regulation of microtubule bundles in axon maintenance and pathology[J].Neural Development,2019,14(1): 1-28.
    [63]VOS B E, LIEBRAND L C, VAHABI M, et al. Programming the mechanics of cohesive fiber networks by compression[J].Soft Matter,2017,13(47): 8886-8893.
    [64]VAN OOSTEN A S G, VAHABI M, LICUP A J, et al. Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening[J].Scientific Reports,2016,6: 19270.
    [65]MACKINTOSH F C, KAS J, JANMEY P A. Elasticity of semiflexible biopolymer networks[J].Biophysical Journal,1996,70(2): 4425-4428.
    [66]LIU J, KOENDERINK G H, KASZA K E, et al. Visualizing the strain field in semiflexible polymer networks: strain fluctuations and nonlinear rheology of F-actin gels[J].Physical Review Letters,2007,98(19): 198304.
    [67]MORSE D C. Viscoelasticity of concentrated isotropic solutions of semiflexible polymers, 3: linear rheology[J].Macromolecules,1999,32(18): 5934-5943.
    [68]LIN Y C, YAO N Y, BROEDERSZ C P, et al. Origins of elasticity in intermediate filament networks[J].Physical Review Letters,2010,104(5): 058101.
    [69]HUISMAN E M, VAN DILLEN T, ONCK P R, et al. Three-dimensional cross-linked F-actin networks: relation between network architecture and mechanical behavior[J].Physical Review Letters,2007,99(20): 208103.
    [70]KURNIAWAN N A, ENEMARK S, RAJAGOPALAN R. The role of structure in the nonlinear mechanics of cross-linked semiflexible polymer networks[J].Journal of Chemical Physics,2012,136(6): 065101.
    [71]LIN Y, WEI X, QIAN J, et al. A combined finite element-Langevin dynamics (FEM-LD) approach for analyzing the mechanical response of bio-polymer networks[J].Journal of the Mechanics and Physics of Solids,2014,62(1): 2-18.
    [72]ONCK P R, KOEMAN T, VAN DILLEN T, et al. Alternative explanation of stiffening in cross-linked semiflexible networks[J].Physical Review Letters,2005,95(17): 178102.
    [73]LICUP A, SHARMA A, MACKINTOSH H C. Elastic regimes of subisostatic athermal fiber networks[J].Physical Review E,2016,93(1): 012407.
    [74]WILHELM J, FREY E. Elasticity of stiff polymer networks[J].Physical Review Letters,2003,91(10): 108103.
    [75]LIELEG O, CLAESSENS M, BAUSCH A R. Structure and dynamics of cross-linked actin networks[J].Soft Matter,2010,6(2): 218-225.
    [76]BROEDERSZ C P, MAO X, LUBENSKY T C, et al. Criticality and isostaticity in fibre networks[J].Nature Physics,2011,7(12): 983-988.
    [77]BROEDERSZ C P, SHEINMAN M, MACKINTOSH F C. Filament-length-controlled elasticity in 3D fiber networks[J].Physical Review Letters,2012,108(7): 078102.
    [78]LINSTROM S B, KULACHENKO A, JAWERTH L M, et al. Finite-strain, finite-size mechanics of rigidly cross-linked biopolymer networks[J].Soft Matter,2013,9(30): 7302-7313.
    [79]BROEDERSZ C P, STORM C, MACKINTOSH F C. Nonlinear elasticity of composite networks of stiff biopolymers with flexible linkers[J].Physical Review Letters,2008,101(11): 118103.
    [80]WEI X, ZHU Q, QIAN J, et al. Response of biopolymer networks governed by the physical properties of cross-linking molecules[J].Soft Matter,2016,12(9): 2537-2541.
    [81]HAN Y L, RONCERAY P, XU G Q, et al. Cell contraction induces long-ranged stress stiffening in the extracellular matrix[J].Proceedings of the National Academy of Sciences of the United States of America,2018,115(16): 4075-4080.
    [82]ADAMIAK K, SIONKOWSKA A. Current methods of collagen cross-linking: review[J].International Journal of Biological Macromolecules,2020,161: 550-560.
    [83]GONG B, LIN J, WEI X, et al. Cross-linked biopolymer networks with active motors: mechanical response and intra-network transport[J].Journal of the Mechanics and Physics of Solids,2019,127: 80-93.
    [84]LIELEG O, BAUSCH A R. Cross-linker unbinding and self-similarity in bundled cytoskeletal networks[J].Physical Review Letters,2007,99(15): 158105.
    [85]WEI X, FANG C, GONG B, et al. Viscoelasticity of 3D actin networks dictated by the mechanochemical characteristics of cross-linkers[J].Soft Matter,2021. DOI: 10.1039/d0sm01558j.
    [86]程传亮. 纤维交联网络的力学响应[D]. 硕士学位论文. 杭州:浙江大学, 2016. (CHENG Chuanliang. Mechanical responses of filamentous network [D]. Master Thesis. Hangzhou: Zhejiang University, 2016.(in Chinese))
    [87]ABHILASH A S, PUROHIT P K, JOSHI S P. Stochastic rate-dependent elasticity and failure of soft fibrous network s[J].Soft Matter,2012,8(26): 7004-7016.
    [88]Bell G I. Models for the specific adhesion of cells to cells[J].Science,1978,200(4342): 618-627.
    [89]BELL G I, DEMBO M, BONGRAND P. Cell adhesion: competition between nonspecific repulsion and specific bonding[J].Biophysical Journal,1984,45(6): 1051-1064.
    [90]KIM T, HWANG W, KAMM R. Dynamic role of cross-linking proteins in actin rheology[J].Biophysical Journal,2011,101(7): 1597-1603.
    [91]BONAKDAR N, GERUM R, KUHN M, et al. Mechanical plasticity of cells[J].Nature Materials,2016,15(10): 1090-1094.
    [92]FISCHER-FRIEDRICH E, TOYODA Y, CATTIN C J, et al. Rheology of the active cell cortex in mitosis[J].Biophysical Journal,2016,111(3): 589-600.
    [93]CLEMENT R, DEHAPIOT B, COLLINET C, et al. Viscoelastic dissipation stabilizes cell shape changes during tissue morphogenesis[J].Current Biology,2017,27(20): 3132-3142.
    [94]GITTES F, MACKINTOSH F C. Dynamic shear modulus of a semiflexible polymer network[J].Physical Review E,1998,58(2): R1241-R1244.
    [95]KOENDERINK G H, ATAKHORRAMI M, MACKINTOSH F C, et al. High-frequency stress relaxation in semiflexible polymer solutions and networks[J].Physical Review Letters,2006,96(13): 138307.
    [96]GIELER T, BALL R, WEOTZ D A. Strain hardening of fractal colloidal gels[J].Physical Review Letters,1999,82(5): 1064-1067.
    [97]FERRER J M, LEE H, CHEN J, et al. Measuring molecular rupture forces between single actin filaments and actin-binding proteins[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(27): 9221-9226.
    [98]COURSON D S, ROCK R S. Actin cross-link assembly and disassembly mechanics for alpha-actinin and fascin[J].Journal of Biological Chemistry,2010,285(34): 26350-26357.
    [99]LIELEG O, SCHMOLLER K M, CLAESSENS M, et al. Cytoskeletal polymer networks: viscoelastic properties are determined by the microscopic interaction potential of cross-links[J].Biophysical Journal,2009,96(11): 4725-4732.
    [100]BROEDERSZ C P, DEPKEN M, YA N Y, et al. Cross-link-governed dynamics of biopolymer networks[J].Physical Review Letters,2010,105(23): 238101.
    [101]MULLER K W, BRUINSMA R F, LIELEG O, et al. Rheology of semiflexible bundle networks with transient linkers[J].Physical Review Letters,2014,112(23): 238102.
    [102]MAIER M, MULLER K W, HEUSSINGER C, et al. A single charge in the actin binding domain of fascin can independently tune the linear and non-linear response of an actin bundle network[J].European Physical Journal E,2015,38(5): 50.
    [103]GRALKA M, KRO K. Inelastic mechanics: a unifying principle in biomechanics[J].Biochimica et Biophysica Acta: Molecular Cell Research,2015,1853(11): 3025-3037.
    [104]WEINS A, SCHIONDORFF J S, NAKAMURA F, et al. Disease-associated mutant alpha-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity[J].Proceedings of the National Academy of Sciences of the United States of America,2007,104(41): 16080-16085.
    [105]HUANG D L, BAX N A, BUCKLEY C D, et al. Vinculin forms a directionally asymmetric catch bond with F-actin[J].Science,2017,357(6532): 703-706.
    [106]YAO N Y, BROEDERSZC P, DEPKEN M, et al. Stress-enhanced gelation: a dynamic nonlinearity of elasticity[J].Physical Review Letters,2013,110(1): 018103.
    [107]WEI X, FANG C, GONG B, et al. Time-dependent response of bio-polymer networks regulated by catch and slip bond-like kinetics of cross-linker[J].Journal of the Mechanics and Physics of Solids,2021,147: 104267.
    [108]NAM S, HU K H, BUTTE M J, et al. Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels[J].Proceedings of the National Academy of Sciences of the United States of America,2016,113(20): 5492-5497.
    [109]LOU J Z, SYPWERS R, NAM S M, et al. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture[J].Biomaterials,2018,154: 213-222.
    [110]GONG Z, SZCZESNY S E, CALIARI S R, et al. Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates[J].Proceedings of the National Academy of Sciences of the United States of America,2018,115(12): E2686-E2695.
    [111]BENNETT M, CANTINI M, REBOUD J, et al. Molecular clutch drives cell response to surface viscosity[J].Proceedings of the National Academy of Sciences of the United States of America,2018,115(6): 1192-1197.
    [112]GNESOTTO F S, MURA F, GLADROW J, et al. Broken detailed balance and non-equilibrium dynamics in living systems: a review[J].Reports on Progress in Physics,2018,81(6): 066601.
    [113]CONIBEAR P B, BAGSHAW C R. Myosin monomer density and exchange in synthetic thick filaments investigated using fluorescence microscopy with single molecule sensitivity[J].Proceedings of Royal Society B,2000,267(1441): 415-421.
    [114]HUMPHREY D, DUGGAN C, SAHA D, et al. Active fluidization of polymer networks through molecular motors[J].Nature,2002,416(6879): 413-416.
    [115]CHAN C J, EKPENYONG A E, GOLFIER S, et al. Myosin Ⅱ activity softens cells in suspension[J].Biophysical Journal,2015,108(8): 1856-1869.
    [116]KOENDERINK G H, PALUCH E K. Architecture shapes contractility in actomyosin networks[J].Current Opinion in Cell Biology,2018,50: 79-85.
    [117]MURRELL M P, GARDEL M. F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex[J].Molecular Biology of the Cell,2012,109(51): 20820-20825.
    [118]RONCERAY P, BROEDERSZ C P, LENZ M. Fiber networks amplify active stress[J].Proceedings of the National Academy of Sciences of the United States of America,2016,113(11): 2827-2832.
    [119]ZEMEL A, BISHOFS I B, SAFRAN S A. Active elasticity of gels with contractile cells[J].Physical Review Letters,2006,97(12): 128103.
    [120]JANSEN K A, BACABAC R G, PIECHOCKA I K, et al. Cells actively stiffen fibrin networks by generating contractile stress[J].Biophysical Journal,2013,105(10): 2240-2251.
    [121]WOLLRAB V, BELMONTE J M, BALDAUF L, et al. Polarity sorting drives remodeling of actin-myosin networks[J].Journal of Cell Science,2019,132(4): 219717.
    [122]FOSTER P J, FURTHAUER S, SHELLEY M J, et al. Active contraction of microtubule networks[J].eLife,2015,4: e10837.
    [123]MACKINTOSH F C, LEVINE A J. Nonequilibrium mechanics and dynamics of motor-activated gels[J].Physical Review Letters,2008,100(1): 018104.
    [124]SHEINMAN M, BROEDERSZ C P, MACKINTOSH F C. Actively stressed marginal networks[J].Physical Review Letters,2012,109(23): 238101.
    [125]GONG B, WEI X, QIAN J, et al. Modeling and simulations of the dynamic behaviors of actin-based cytoskeleton networks[J].ACS Biomaterials Science & Engineering,2019,5(8): 3720-3734.
    [126]MIZUNO D, TARDIN C, SCHMIDT C F, et al. Nonequilibrium mechanics of active cytoskeletal networks[J].Science,2007,315(5810): 370-373.
    [127]GKRETSI V, STYLIANOPOULOS T. Cell adhesion and matrix stiffness: coordinating cancer cell invasion and metastasis[J].Frontiers in Oncology,2018,8: 145.
    [128]CHEN P, SHENOY V B. Strain stiffening induced by molecular motors in active crosslinked biopolymer networks[J].Soft Matter,2011,7(2): 355-358.
    [129]MAK M, ZAMAN M H, KAMM R D, et al. Interplay of active processes modulates tension and drives phase transition in self-renewing, motor-driven cytoskeletal networks[J].Nature Communications,2016,7(5): 10323.
    [130]FREEDMAN S L, BANERJEE S, HOCKY G M, et al. A versatile framework for simulating the dynamic mechanical structure of cytoskeletal networks[J].Biophysical Journal,2017,113(2): 448-460.
    [131]CARLIER M F, SHEKHAR S. Global treadmilling coordinates actin turnover and controls the size of actin networks[J].Nature Reviews Molecular Cell Biology,2017,18(6): 389-401.
    [132]BROUHARD G J, RICE L M. Microtubule dynamics: an interplay of biochemistry and mechanics[J].Nature Reviews Molecular Cell Biology,2018,19(7): 451-463.
    [133]HIRAIWA T, SALBREUX G. Role of turnover in active stress generation in a filament network[J].Physical Review Letters,2016,116(18): 188101.
    [134]MCFADDEN W M, MCCALL P M, GAEDEL M L, et al. Filament turnover tunes both force generation and dissipation to control long-range flows in a model actomyosin cortex[J].PLOS Computational Biology,2017,13(12): 1005811.
    [135]TAN T H, MALIK-GARBI M, ABU-SHAH E, et al. Self-organized stress patterns drive state transitions in actin cortices[J].Science Advances,2018,4(6): eaar2847.
    [136]WUEHR M, FREEMAN R M, PRESLER M, et al. Deep proteomics of the xenopus laevis egg using an mRNA-derived reference database[J].Current Biology,2014,24(13): 1467-1475.
    [137]SCHMOLLER K M, FERNANDEZ P, AREVALO R C, et al. Cyclic hardening in bundled actin networks[J].Nature Communications,2010,1: 134.
    [138]MAJUMDAR S, FOUCARD L C, LEVINE A J, et al. Mechanical hysteresis in actin networks[J].Soft Matter,2018,14(11): 2052-2058.
    [139]STACHEL I, SCHWARZENBOLZ U, HENLE T, et al. Cross-linking of type Ⅰ collagen with microbial transglutaminase: identification of cross-linking sites[J].Biomacromolecules,2010,11(3): 698-705.
    [140]MUNSTER S, JAWERTH L M, LESILIE B A, et al. Strain history dependence of the nonlinear stress response of fibrin and collagen networks[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(30): 12197-12202.
    [141]KIM J, FENG J, JINES C A R, et al. Stress-induced plasticity of dynamic collagen networks[J].Nature Communications,2017,8(1): 842.
    [142]BAN E, FRANKLIN J M, NAM S, et al. Mechanisms of plastic deformation in collagen networks induced by cellular forces[J].Biophysical Journal,2018,114(2): 450-461.
    [143]FALZONE T T, LENZ M, KOVZR D R, et al. Assembly kinetics determine the architecture of alpha-actinin crosslinked F-actin networks[J].Nature Communications,2012,3: 861.
    [144]LIELEG O, KAYSER J, BRAMBILLA G, et al. Slow dynamics and internal stress relaxation in bundled cytoskeletal networks[J].Nature Materials,2011,10(3): 236-242.
    [145]FALLQVIST B, KULACHENKO A, KROOON M. Modelling of cross-linked actin networks : influence of geometrical parameters and cross-link compliance[J].Journal of Theoretical Biology,2014,350: 57-69.
    [146]BURLA F, DUSSI S, MARTINEZ-TORRES C, et al. Connectivity and plasticity determine collagen network fracture[J].Proceedings of the National Academy of Sciences of the United States of America,2020,117(15): 8326-8334.
    [147]MULLA Y, OLIVERI G, OVERVELDE J T B, et al. Crack initiation in viscoelastic materials[J].Physical Review Letters,2018,120(26): 268002.
    [148]MULLA Y, KOENDERINK G H. Crosslinker mobility weakens transient polymer networks[J].Physical Review E,2018,98(6): 062503.
    [149]WANG H L, ABHILASH A S, CHEN C S, et al. Long-range force transmission in fibrous matrices enabled by tension-driven alignment of fibers[J].Biophysical Journal,2014,107(11): 2592-2603.
    [150]LIN S T, LIU J, LIU X Y, et al. Muscle-like fatigue-resistant hydrogels by mechanical training[J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(21): 10244-10249.
    [151]CHAUDHURI O, GU L, DARNELL M, et al. Substrate stress relaxation regulates cell spreading[J].Nature Communications,2015,6: 6365.
    [152]CHAUDHURI O, GU L, KLIMPERS D, et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity[J].Nature Materials,2016,15(3): 326-334.
    [153]JASNIN M, ASANO S, GOUIN E, et al. Three-dimensional architecture of actin filaments in Listeria monocytogenes comet tails[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(51): 20521-20526.
    [154]DOBRAMYSL U, PAPOIAN G A, ERBAN R. Steric effects induce geometric remodeling of actin bundles in filopodia[J].Biophysical Journal,2016,110(9): 2066-2075.
    [155]LEIJNSE N, ODDERSHEDE L B, BENDIX P M. Helical buckling of actin inside filopodia generates traction[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(1): 136-141.
    [156]CLAESSENS M M A E, BATHE M, FREY E, et al. Actin-binding proteins sensitively mediate F-actin bundle stiffness[J].Nature Materials,2006,5(9): 748-753.
    [157]LI T, OLOYEDE A, GU Y T. F-actin crosslinker: a key player for the mechanical stability of filopodial protrusion[J].Journal of Applied Physics,2013,114(21): 214701.
    [158]BATHE M, HEUSSINGER C, CLAESSENS M M A E, et al. Cytoskeletal bundle mechanics[J].Biophysical Journal,2008,94(8): 2955-2964.
    [159]WANG Y Z, QIAN J. Buckling of filamentous actin bundles in filopodial protrusions[J].Acta Mechanica Sinica,2019,35(2): 365-375.
    [160]CHEN J, KANAI Y, COWAN N J, et al. Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons[J].Nature,1992,360(6405): 674-677.
    [161]KRIEG M, DUNN A R, GOODMMAN M B. Mechanical control of the sense of touch by β-spectrin[J].Nature Cell Biology,2014,16(3): 224-233.
    [162]LETERRIER C. A dual role for βⅡ-spectrin in axons[J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(31): 15324-15326.
    [163]FAN A, TOFANGCHI A, KANDEL M, et al. Coupled circumferential and axial tension driven by actin and myosin influences in vivo axon diameter[J].Scientific Reports,2017,7(1): 1-12.
    [164]DUBEY S, BHEMBRE N, BODAS S, et al. The axonal actin-spectrin lattice acts as a tension buffering shock absorber[J].eLife,2020,9: e51772.
    [165]WANG Y Z, WEI X, GONG B, et al. Coarse-grained modeling and mechanical behaviors of actin-spectrin-microtubule complex in axonal cytoskeleton[J].International Journal of Applied Mechanics,2021,〖STHZ〗19:1738-1749.
    [166]ZHANG Y H, ABIRAMAN K, LI H, et al. Modeling of the axon membrane skeleton structure and implications for its mechanical properties[J].PLOS Computational Biology,2017,13(2): e1005407.
    [167]SOHEILYPOUR M, PEYRO M, PETER S J, et al. Buckling behavior of individual and bundled microtubules[J].Biophysical Journal,2015,108(7): 1718-1726.
    [168]BANERJEE S, GARDEL M L, SCHWARZ U S. The actin cytoskeleton as an active adaptive material[J].Annual Review of Condensed Matter Physics,2020,11: 421-439.
    [169]KADZIK R S, HOMA K E, KOVAR D R. F-actin cytoskeleton network self-organization through competition and cooperation[J].Annual Review of Cell and Developmental Biology,2020,36: 35-60.
    [170]SWWTHARAMANE S, ETIENNE-MANNEVILLE S. Cytoskeletal crosstalk in cell migration[J].Trends in Cell Biology,2020,30(9):720-735.
    [171]VIGNAUD T, COPOS C, LETERRIER C, et al. Stress fibres are embedded in a contractile cortical network[J].Nature Materials,2021,20(3): 410-420.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (600) PDF downloads(108) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return